In this paper we study a generalized Gause model with prey harvesting and a generalized Holling response function of type III:p(x) = mx 2 ax 2 +bx+1 . The goal of our study is to give the bifurcation diagram of the model. For this we need to study saddle-node bifurcations, Hopf bifurcation of codimension 1 and 2, heteroclinic bifurcation, and nilpotent saddle bifurcation of codimension 2 and 3. The nilpotent saddle of codimension 3 is the organizing center for the bifurcation diagram. The Hopf bifurcation is studied by means of a generalized Liénard system, and for b = 0 we discuss the potential integrability of the system. The nilpotent point of multiplicity 3 occurs with an invariant line and can have a codimension up to 4. But because it occurs with an invariant line, the effective highest codimension is 3. We develop normal forms (in which the invariant line is preserved) for studying of the nilpotent saddle bifurcation. For b = 0, the reversibility of the nilpotent saddle is discussed. We study the type of the heteroclinic loop and its cyclicity. The phase portraits of the bifurcations diagram (partially conjectured via the results obtained) allow us to give a biological interpretation of the behavior of the two species.
Recently in 2005, Briani and Rampazzo (Nonlinear Differ Equ Appl 12:71-91, 2005) gave, using results of Crandall and Lions (Ill J Math 31:665-688, 1987), Ishii (Indiana Univ Math J 33: 721-748, 1984, Bull Fac Sci Eng 28: 33-77, 1985 and Ley (Adv Diff Equ 6:547-576, 2001) a density approach to Hamilton-Jacobi equations with t-measurable Hamiltonians. In this paper we show, using an important result of Briani and Rampazzo (Nonlinear Differ Equ Appl 12:71-91, 2005) the existence and uniqueness of viscosity solutions to the one-body Liouville relativistic equation in Yang-Mills charged Bianchi space times with non-zero mass. To our knowledge, the method used here is original and thus, totally different from those used in Alves (C R Acad Sci Paris Sér
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.