In this study, we prepared and characterized enzyme (α-chymotrypsin or lactase)-encapsulating core-shell fibermats by electrospinning. The hydrophilic copolymer of acrylamide (AM) and diacetone acrylamide (DAAM), poly(AM/DAAM), was used as the base material to obtain the core unit of nanofibers. During electrospinning, poly(AM/DAAM) was crosslinked with the bifunctional crosslinker adipic acid dihydrazide (ADH) in the presence of enzyme molecules. The cores were wrapped with hydrophobic poly(ε-caprolactone) (PCL) layers as shell unit. Different from the fibermats of only poly(AM/DAAM)/ADH, the core-shell fibermat of poly(AM/DAAM)/ADH and PCL exhibited sufficient mechanical strength and stability of the stacked nanofibrous structure in a neutral-pH buffer. Furthermore, when the PCL-shell thickness was controlled to be less than 150 nm, the encapsulated enzymes exhibited an apparent activity of >70–80% for low-molecular weight substrates in an immersion buffer. These results indicate that the core-shell fibermats of poly(AM/DAAM)/ADH and PCL (or other hydrophobic polymer) could be used as effective enzyme-immobilizing platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.