Worldwide, aquifers in low‐lying coastal areas are threatened by saltwater occurrence, as a result of small head gradients, high groundwater abstraction rates, and drain management of the landscape, which is likely to intensify with climate change. Numerical models can serve as tools to identify the sources of the salt and thus to increase understanding of the driving mechanisms and important parameters controlling the extent of saltwater intrusions. This way, areas vulnerable to sea level rise can be identified and managed. Challenges include unknown initial salt concentrations, heterogeneous geology, and anthropogenic alterations. In this study, hydrogeological, geophysical, and geochemical data are used to develop a numerical density‐dependent groundwater flow and transport model with the objective to understand the history of a saltwater‐affected groundwater system and its likely response to historic and future changes. The extent of the simulated saltwater intrusion compares well with Airborne Electromagnetic data that show salt water up to 20 km inland. The results reveal that the salt water originates from a combination of laterally intruding seawater and vertically infiltrating transgression water. Main features controlling the progression of the modern seawater into the coastal aquifers are high permeable, deep Miocene sand aquifers, buried valleys that provide preferential flow paths in combination with extensive Miocene clay layers that delay saltwater intrusion. Anthropogenic activity enhances the saltwater inflow from the ocean and induces transient conditions. Future scenarios show that saltwater progression due to nonstationarity leads to enhanced contamination of the deeper aquifers. Climate change affects primarily the shallow aquifer systems.
An experiment was conducted to study the movement of surface‐applied tracers and fertilizer to groundwater on an agricultural field under dryland farming practices. Movement of surface‐applied bromide, chloride, and fluoride tracers, and fertilizer nitrate (NO3) through a coarse‐loamy glacial till soil and vadose zone to saturated glacial till at about 3 to 4 m, and to a confined aquifer at 6.8 m, were monitored for 5‐yr. Crop treatments were a dryland rotation of wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], and sunflower (Helianthus annuus L.). Applied bromide, chloride, and NO3 could be detected in trace amounts at all levels, including the aquifer, within a few days after application and following large summer storms. Within the root zone, NO3 and chloride concentrations varied with root extraction and application placement. The largest stable concentration of solute occurred within the shallow vadose zone beneath the root zone. Below the root zone, tracer and NO3 concentrations decreased exponentially with depth. Following a large rainfall the shallow vadose layer served as a “feeder zone” for solute movement to deeper layers. Elevated concentrations following recharge events were spatially sporadic, occurring at some locations and not at others. Spatially variable and temporary increases in solute concentrations were caused by spatially variable recharge, governed by microtopographic controls. Water concentrated in microtopographical “low” areas and moved in concentrated plugs to the water table carrying solute. NO3‐N did not increase in the saturated till or the aquifer over the 5‐yr period.
Abstract. Karst groundwater systems are characterized by the presence of multiple porosity types. Of these, subsurface conduits that facilitate concentrated, heterogeneous flow are challenging to resolve geologically and geophysically. This is especially the case in evaporite karst systems, such as those present on the shores of the Dead Sea, where rapid geomorphological changes are linked to a fall in base level by over 35 m since 1967. Here we combine field observations, remote-sensing analysis, and multiple geophysical surveying methods (shear wave reflection seismics, electrical resistivity tomography, ERT, self-potential, SP, and ground-penetrating radar, GPR) to investigate the nature of subsurface groundwater flow and its interaction with hypersaline Dead Sea water on the rapidly retreating eastern shoreline, near Ghor Al-Haditha in Jordan. Remote-sensing data highlight links between the evolution of surface stream channels fed by groundwater springs and the development of surface subsidence patterns over a 25-year period. ERT and SP data from the head of one groundwater-fed channel adjacent to the former lakeshore show anomalies that point to concentrated, multidirectional water flow in conduits located in the shallow subsurface (< 25 m depth). ERT surveys further inland show anomalies that are coincident with the axis of a major depression and that we interpret as representing subsurface water flow. Low-frequency GPR surveys reveal the limit between unsaturated and saturated zones (< 30 m depth) surrounding the main depression area. Shear wave seismic reflection data nearly 1 km further inland reveal buried paleochannels within alluvial fan deposits, which we interpret as pathways for groundwater flow from the main wadi in the area towards the springs feeding the surface streams. Finally, simulations of density-driven flow of hypersaline and undersaturated groundwaters in response to base-level fall perform realistically if they include the generation of karst conduits near the shoreline. The combined approaches lead to a refined conceptual model of the hydrological and geomorphological processes developed at this part of the Dead Sea, whereby matrix flow through the superficial aquifer inland transitions to conduit flow nearer the shore where evaporite deposits are encountered. These conduits play a key role in the development of springs, stream channels and subsidence across the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.