Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
Data from the cumulative genetic risk score analysis suggests that the variants reported by the AMDGene consortium account for a smaller genetic burden of disease in the Amish compared with the non-Amish Caucasian population. Using exome sequencing data, we identified a novel missense mutation that is shared among a densely affected nuclear Amish family and located in a gene that has been previously implicated in AMD risk.
Summary
To identify novel late-onset Alzheimer disease (LOAD) risk genes, we have analyzed Amish populations of Ohio and Indiana. We performed genome-wide SNP linkage and association studies on 798 individuals (109 with LOAD). We tested association using the Modified Quasi-Likelihood Score (MQLS) test and also performed two-point and multipoint linkage analyses. We found that LOAD was significantly associated with APOE (P=9.0×10-6) in all our ascertainment regions except for the Adams County, Indiana, community (P=0.55). Genome-wide, the most strongly associated SNP was rs12361953 (P=7.92×10-7). A very strong, genome-wide significant multipoint peak (recessive HLOD=6.14, dominant HLOD=6.05) was detected on 2p12. Three additional loci with multipoint HLOD scores >3 were detected on 3q26, 9q31, and 18p11. Converging linkage and association results, the most significantly associated SNP under the 2p12 peak was at rs2974151 (P=1.29×10-4). This SNP is located in CTNNA2, which encodes catenin alpha 2, a neuronal-specific catenin known to have function in the developing brain. These results identify CTNNA2 as a novel candidate LOAD gene, and implicate three other regions of the genome as novel LOAD loci. These results underscore the utility of using family-based linkage and association analysis in isolated populations to identify novel loci for traits with complex genetic architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.