Background
The worldwide prevalence of dementia is rapidly rising. Alzheimer’s disease (AD), accounts for 70% of cases and has a 10–20-year preclinical period, when brain pathology covertly progresses before cognitive symptoms appear. The 2020 Lancet Commission estimates that 40% of dementia cases could be prevented by modifying lifestyle/medical risk factors. To optimise dementia prevention effectiveness, there is urgent need to identify individuals with preclinical AD for targeted risk reduction. Current preclinical AD tests are too invasive, specialist or costly for population-level assessments. We have developed a new online test, TAS Test, that assesses a range of motor-cognitive functions and has capacity to be delivered at significant scale. TAS Test combines two innovations: using hand movement analysis to detect preclinical AD, and computer-human interface technologies to enable robust ‘self-testing’ data collection. The aims are to validate TAS Test to [1] identify preclinical AD, and [2] predict risk of cognitive decline and AD dementia.
Methods
Aim 1 will be addressed through a cross-sectional study of 500 cognitively healthy older adults, who will complete TAS Test items comprising measures of motor control, processing speed, attention, visuospatial ability, memory and language. TAS Test measures will be compared to a blood-based AD biomarker, phosphorylated tau 181 (p-tau181). Aim 2 will be addressed through a 5-year prospective cohort study of 10,000 older adults. Participants will complete TAS Test annually and subtests of the Cambridge Neuropsychological Test Battery (CANTAB) biennially. 300 participants will undergo in-person clinical assessments. We will use machine learning of motor-cognitive performance on TAS Test to develop an algorithm that classifies preclinical AD risk (p-tau181-defined) and determine the precision to prospectively estimate 5-year risks of cognitive decline and AD.
Discussion
This study will establish the precision of TAS Test to identify preclinical AD and estimate risk of cognitive decline and AD. If accurate, TAS Test will provide a low-cost, accessible enrichment strategy to pre-screen individuals for their likelihood of AD pathology prior to more expensive tests such as blood or imaging biomarkers. This would have wide applications in public health initiatives and clinical trials.
Trial registration
ClinicalTrials.gov Identifier: NCT05194787, 18 January 2022. Retrospectively registered.
In general, humans and animals often interact within the same environment at the same time. Human activities may disturb or affect some bird activities. Therefore, it is important to monitor and study the relationships between human and animal activities. This paper proposed a system able not only to automatically classify human and bird activities using bioacoustic data, but also to automatically summarize patterns of events over time. To perform automatic summarization of acoustic events, a frequency–duration graph (FDG) framework was proposed to summarize the patterns of human and bird activities. This system first performs data pre-processing work on raw bioacoustic data and then applies a support vector machine (SVM) model and a multi-layer perceptron (MLP) model to classify human and bird chirping activities before using the FDG framework to summarize results. The SVM model achieved 98% accuracy on average and the MLP model achieved 98% accuracy on average across several day-long recordings. Three case studies with real data show that the FDG framework correctly determined the patterns of human and bird activities over time and provided both statistical and graphical insight into the relationships between these two events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.