During exposure to Virtual Reality (VR) a sensory conflict may be present, whereby the visual system signals that the user is moving in a certain direction with a certain acceleration, while the vestibular system signals that the user is stationary. In order to reduce this conflict, the brain may down-weight vestibular signals, which may in turn affect vestibular contributions to self-motion perception. Here we investigated whether vestibular perceptual sensitivity is affected by VR exposure. Participants’ ability to detect artificial vestibular inputs was measured during optic flow or random motion stimuli on a VR head-mounted display. Sensitivity to vestibular signals was significantly reduced when optic flow stimuli were presented, but importantly this was only the case when both visual and vestibular cues conveyed information on the same plane of self-motion. Our results suggest that the brain dynamically adjusts the weight given to incoming sensory cues for self-motion in VR; however this is dependent on the congruency of visual and vestibular cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.