Background & Aims-Enteric nematode infection induces a strong Th2 cytokine response and is characterized by increased infiltration of various immune cells including macrophages. The role of these immune cells in host defense against enteric nematode infection, however, remains poorly defined. The present study investigated the role of macrophages and the arginase pathway in nematode-induced changes in intestinal smooth muscle function and worm expulsion.
Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies.
IL-25 (IL-17E) is a member of the IL-17 cytokine family. IL-25–deficient mice exhibit impaired Th2 immunity against nematode infection, implicating IL-25 as a key component in mucosal immunity. The sources of IL-25 and mechanisms responsible for the induction of Th2 immunity by IL-25 in the gastrointestinal tract remain poorly understood. There is also little information on the regulation of IL-25 during inflammation or its role in gut function. In the current study, we investigated the regulation of IL-25 during Nippostrongylus brasiliensis infection and the contribution of IL-25 to the infection-induced alterations in intestinal function. We found that epithelial cells, but not immune cells, are the major source of IL-25 in the small intestine. N. brasiliensis infection-induced upregulation of IL-25 depends upon IL-13 activation of STAT6. IL-25−/− mice had diminished intestinal smooth muscle and epithelial responses to N. brasiliensis infection that were associated with an impaired Th2 protective immunity. Exogenous IL-25 induced characteristic changes similar to those after nematode infection but was unable to restore the impaired host immunity against N. brasiliensis infection in IL-13−/− mice. These data show that IL-25 plays a critical role in nematode infection-induced alterations in intestinal function that are important for host protective immunity, and IL-13 is the major downstream Th2 cytokine responsible for the IL-25 effects.
Obesity is associated with a chronic low-grade inflammation characterized by increased levels of proinflammatory cytokines that are implicated in disrupted metabolic homeostasis. Parasitic nematode infection induces a polarized Th2 cytokine response and has been explored to treat autoimmune diseases. We investigated the effects of nematode infection against obesity and the associated metabolic dysfunction. Infection of RIP2-Opa1KO mice or C57BL/6 mice fed a high-fat diet (HFD) with Nippostrongylus brasiliensis decreased weight gain and was associated with improved glucose metabolism. Infection of obese mice fed the HFD reduced body weight and adipose tissue mass, ameliorated hepatic steatosis associated with a decreased expression of key lipogenic enzymes/mediators, and improved glucose metabolism, accompanied by changes in the profile of metabolic hormones. The infection resulted in a phenotypic change in adipose tissue macrophages that was characterized by upregulation of alternative activation markers. Interleukin-13 (IL-13) activation of the STAT6 signaling pathway was required for the infection-induced attenuation of steatosis but not for improved glucose metabolism, whereas weight loss was attributed to both IL-13/STAT6-dependent and -independent mechanisms. Parasitic nematode infection has both preventive and therapeutic effects against the development of obesity and associated features of metabolic dysfunction in mice.
IL-13 has a prominent role in host defense against the gastrointestinal nematode Nippostrongylus brasiliensis; however, the role of IL-13Rα2 in the immune and functional response to enteric infection is not known. In the current study, we investigated changes in smooth muscle and epithelial cell function as well as alterations in gene expression of IL-13 and IL-4 and their receptors using laser-capture microdissection of specific cell types in the small intestine of N. brasiliensis-infected mice. An infection-induced up-regulation of IL-13Rα2 gene expression was confined to smooth muscle and was dependent on STAT6 and IL-13, but not on IL-4. In contrast, expression of IL-13Rα1 was reduced, indicating that changes in IL-13α2 expression serve to limit the biological effects of IL-13. The increased availability of IL-13 in IL-13Rα2−/− mice resulted in marked changes in constitutive epithelial and smooth muscle function. In addition, maximal changes in smooth muscle hypercontractility and epithelial cell resistance peaked earlier after infection in IL-13Rα2−/− compared with wild-type mice. This did not coincide with an earlier Th2 immune response as expression of IL-4 and IL-13 was attenuated in IL-13Rα2−/− mice and worm expulsion was similar to that of wild-type mice. These data show that IL-13Rα2 plays an important role in nematode infection by limiting the availability of IL-13 during infection, thereby regulating both the immune and biological effects of IL-13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.