Mungbean (Vigna radiata (L.) Wilczek) in Australia has been transformed from a niche opportunistic crop into a major summer cropping option for dryland growers in the summer-dominant rainfall regions of Queensland and New South Wales. This transformation followed stepwise genetic improvements in both grain yields and disease resistance. For example, more recent cultivars such as 'Crystal', 'Satin II', and 'Jade-AU' have provided up to a 20% yield advantage over initial introductions. Improved agronomic management to enable mechanised management and cultivation in narrow (<50 cm) rows has further promised to increase yields. Nevertheless, average yields achieved by growers for their mungbean crops remain less than 1 t/ha, and are much more variable than other broad acre crops. Further increases in yield and crop resilience in mungbean are vital. In this review, opportunities to improve mungbean productivity have been analysed at four key levels including phenology, leaf area development, dry matter accumulation, and its partitioning into grain yield. Improving the prediction of phenology in mungbean may provide further scope for genetic improvements that better match crop duration to the characteristics of target environments. There is also scope to improve grain yields by increasing dry matter production through the development of more efficient leaf canopies. This may introduce additional production risks as dry matter production depends on the amount of available water, which varies considerably within and across growing regions in Australia. Improving crop yields by exploiting G × E × M interactions related to cultivar photo-thermal sensitivities and make better use of available water in these variable environments is likely to be a less risky strategy. Improved characterisation of growing environments using modelling approaches could also better define and identify the risks of major abiotic constraints. This would assist in optimising breeding and management strategies to increase grain yield and crop resilience in mungbean for the benefit of growers and the industry.
The feasibility of utilizing kenaf (Hibiscus cannabinus L.) as a fibre crop and potential source of paper pulp is being investigated. This paper is the first in a series which develops and validates a simulation model of kenaf, and applies it to assessing the potential for dryland production in regions of tropical Australia. The duration from sowing to flowering is an important determinant of fibre yield in kenaf. Accordingly, the effect of temperature and photoperiod on the phenology of kenaf was examined. Data were collated from sowing-date experiments on kenaf cultivars Guatemala 4 and Everglades 71 at six locations in tropical Australia, ranging in latitude from 12� 54'S. to 19� 32'S. Data from one site, Kununurra, W.A. (15� 39'S.), was used to develop a model which described the duration from sowing to flowering in kenaf based on four stages: (1) sowing to emergence; (2) emergence to the end of the basic vegetative phase (BVP); (3) a photoperiod-induced phase (PIP) which ends at floral initiation; and (4) a flower development phase (FDP). Both kenaf cultivars responded as qualitative short-day plants where flowering did not occur above a critical photoperiod of 12.9 h. Assuming a base photoperiod of 12.0 h, the thermal time required to complete the BVP for the two cultivars was similar. However, photoperiod sensitivity during PIP, and the thermal time required for FDP, were greater for Guatemala 4 than for Everglades 71. Validation of the model against independently observed data for both cultivars at other sites resulted in close predictions in the thermal time required for flowering. This phenological model for kenaf can be used to assess the effect of sowing date on phenology at different locations in tropical environments, and is a key component of a crop growth simulation model to assess the environmental constraints to productivity in these regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.