MIR4435-2HG (LINC00978) is a long non-coding RNA (lncRNA) that acts as an oncogene in almost all cancers. This lncRNA participates in the molecular cascades involved in other disorders such as coronary artery diseases, osteonecrosis, osteoarthritis, osteoporosis, and periodontitis. MIR4435-2HG exerts its functions via the spectrum of different mechanisms, including inhibition of apoptosis, sponging microRNAs (miRNAs), promoting cell proliferation, increasing cell invasion and migration, and enhancing epithelial to mesenchymal transition (EMT). MIR4435-2HG can regulate several signaling pathways, including Wnt, TGF-β/SMAD, Nrf2/HO-1, PI3K/AKT, MAPK/ERK, and FAK/AKT/β‑catenin signaling pathways; therefore, it can lead to tumor progression. In the present review, we aimed to discuss the potential roles of lncRNA MIR4435-2HG in developing cancerous and non-cancerous conditions. Due to its pivotal role in different disorders, this lncRNA can serve as a potential biomarker in future investigations. Moreover, it may serve as a potential therapeutic target for the treatment of various diseases.
BackgroundAlzheimer’s disease (AD) is a degenerative condition characterized by progressive cognitive impairment and dementia. Findings have revolutionized current knowledge of miRNA in the neurological conditions. Two regulatory mechanisms determine the level of mature miRNA expression; one is miRNA precursor processing, and the other is gene expression regulation by transcription factors. This study is allocated to the in-silico investigation of miRNA’s SNPs and their effect on other cell mechanisms.MethodsWe used databases which annotate the functional effect of SNPs on mRNA-miRNA and miRNA-RBP interaction. Also, we investigated SNPs which are located on the promoter or UTR region.ResultsmiRNA SNP3.0 database indicated several SNPs in miR-339 and miR-34a in the upstream and downstream of pre-miRNA and mature miRNAs. While, for some miRNAs miR-124, and miR-125, no polymorphism was observed, and also miR-101 with ΔG -3.1 and mir-328 with ΔG 5.8 had the highest and lowest potencies to produce mature microRNA. SNP2TFBS web-server presented several SNPs which altered the Transcription Factor Binding Sites (TFBS) or generated novel TFBS in the promoter regions of related miRNA. At last, RBP-Var database provided a list of SNPs which alter miRNA-RBP interaction pattern and can also influence other miRNAs’ expression.DiscussionThe results indicated that SNPs microRNA affects both miRNA function and miRNA expression. Our study expands molecular insight into how SNPs in different parts of miRNA, including the regulatory (promoter), the precursor (pre-miRNA), functional regions (seed region of mature miRNA), and RBP-binding motifs, which theoretically may be correlated to the Alzheimer’s disease.
Pulchellin is a plant biotoxin categorized as a type 2 ribosome-inactivating protein (RIPs) which potentially kills cells at very low concentrations. Biotoxins serve as targeting immunotoxins (IT), consisting of antibodies conjugated to toxins. ITs have two independent protein components, a human antibody and a toxin with a bacterial or plant source; therefore, they pose unique setbacks in immunogenicity. To overcome this issue, the engineering of epitopes is one of the beneficial methods to elicit an immunological response. Here, we predicted the tertiary structure of the pulchellin A-chain (PAC) using five common powerful servers and adopted the best model after refining. Then, predicted structure using four distinct computational approaches identified conformational B-cell epitopes. This approach identified some amino acids as a potential for lowering immunogenicity by point mutation. All mutations were then applied to generate a model of pulchellin containing all mutations (so-called PAM). Mutants’ immunogenicity was assessed and compared to the wild type as well as other mutant characteristics, including stability and compactness, were computationally examined in addition to immunogenicity. The findings revealed a reduction in immunogenicity in all mutants and significantly in N146V and R149A. Furthermore, all mutants demonstrated remarkable stability and validity in Molecular Dynamic (MD) simulations. During docking and simulations, the most homologous toxin to pulchellin, Abrin-A was applied as a control. In addition, the toxin candidate containing all mutations (PAM) disclosed a high level of stability, making it a potential model for experimental deployment. In conclusion, by eliminating B-cell epitopes, our computational approach provides a potential less immunogenic IT based on PAC.
Phage display is considered as a gold-standard technique for the extraction of monoclonal antibodies. Within the past decade, the technique has been extensively applied in clinical studies for the discovery of peptides, ligands and antibodies that can be implemented for the detection of clinical biomarkers and therapeutic purposes. This review highlights recent advancements in the field of phage display technology that has aided medicine in therapeutic and diagnostic terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.