A fluorescence in situ hybridization (FISH) method for the rapid detection of Salmonella spp. using a novel peptide nucleic acid (PNA) probe was developed. The probe theoretical specificity and sensitivity were both 100%. The PNA-FISH method was optimized, and laboratory testing on representative strains from the Salmonella genus subspecies and several related bacterial species confirmed the predicted theoretical values of specificity and sensitivity. The PNA-FISH method has been successfully adapted to detect cells in suspension and is hence able to be employed for the detection of this bacterium in blood, feces, water, and powdered infant formula (PIF). The blood and PIF samples were artificially contaminated with decreasing pathogen concentrations. After the use of an enrichment step, the PNA-FISH method was able to detect 1 CFU per 10 ml of blood (5 ؋ 10 9 ؎ 5 ؋ 10 8 CFU/ml after an overnight enrichment step) and also 1 CFU per 10 g of PIF (2 ؋ 10 7 ؎ 5 ؋ 10 6 CFU/ml after an 8-h enrichment step). The feces and water samples were also enriched according to the corresponding International Organization for Standardization methods, and results showed that the PNA-FISH method was able to detect Salmonella immediately after the first enrichment step was conducted. Moreover, the probe was able to discriminate the bacterium in a mixed microbial population in feces and water by counter-staining with 4,6-diamidino-2-phenylindole (DAPI). This new method is applicable to a broad spectrum of samples and takes less than 20 h to obtain a diagnosis, except for PIF samples, where the analysis takes less than 12 h. This procedure may be used for food processing and municipal water control and also in clinical settings, representing an improved alternative to culture-based techniques and to the existing Salmonella PNA probe, Sal23S10, which presents a lower specificity.
h Here, we evaluated a previously established peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) method as a new diagnostic test for Helicobacter pylori clarithromycin resistance detection in paraffin-embedded gastric biopsy specimens. Both a retrospective study and a prospective cohort study were conducted to evaluate the specificity and sensitivity of a PNA-FISH method to determine H. pylori clarithromycin resistance. In the retrospective study (n ؍ 30 patients), full agreement between PNA-FISH and PCR-sequencing was observed. Compared to the reference method (culture followed by Etest), the specificity and sensitivity of PNA-FISH were 90.9% (95% confidence interval [CI], 57.1% to 99.5%) and 84.2% (95% CI, 59.5% to 95.8%), respectively. In the prospective cohort (n ؍ 93 patients), 21 cases were positive by culture. For the patients harboring clarithromycin-resistant H. pylori, the method showed sensitivity of 80.0% (95% CI, 29.9% to 98.9%) and specificity of 93.8% (95% CI, 67.7% to 99.7%). These values likely represent underestimations, as some of the discrepant results corresponded to patients infected by more than one strain. PNA-FISH appears to be a simple, quick, and accurate method for detecting H. pylori clarithromycin resistance in paraffin-embedded biopsy specimens. It is also the only one of the methods assessed here that allows direct and specific visualization of this microorganism within the biopsy specimens, a characteristic that allowed the observation that cells of different H. pylori strains can subsist in very close proximity in the stomach.
This study shows a high Candida carriage rate among this population, thus pointing to the relevance of an accurate diagnostic approach in Candida species identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.