The expression of almost all genes in animals is subject to post-transcriptional regulation by RNA binding proteins (RBPs) and microRNAs (miRNAs). The interactions between both RBPs and miRNAs with mRNA can be mapped on a whole-transcriptome level using experimental and computational techniques established in the past years. The combined action of RBPs and miRNAs is thought to form a post-transcriptional regulatory code. Here we present doRiNA 2.0, available at http://dorina.mdc-berlin.de. In this highly improved new version, we have completely reworked the user interface and expanded the database to improve the usability of the website. Taking into account user feedback over the past years, the input forms for both the simple and the combinatorial search function have been streamlined and combined into a single web page that will also display the search results. Especially, custom uploads is one of the key new features in doRiNA 2.0. To enable the inclusion of doRiNA into third-party analysis pipelines, all operations are accessible via a REST API. Alternatively, local installations can be queried using a Python API. Both the web application and the APIs are available under an OSI-approved Open Source license that allows research and commercial access and re-use.
Background DNase-seq and ATAC-seq are broadly used methods to assay open chromatin regions genome-wide. The single nucleotide resolution of DNase-seq has been further exploited to infer transcription factor binding sites (TFBSs) in regulatory regions through footprinting. Recent studies have demonstrated the sequence bias of DNase I and its adverse effects on footprinting efficiency. However, footprinting and the impact of sequence bias have not been extensively studied for ATAC-seq. Results Here, we undertake a systematic comparison of the two methods and show that a modification to the ATAC-seq protocol increases its yield and its agreement with DNase-seq data from the same cell line. We demonstrate that the two methods have distinct sequence biases and correct for these protocol-specific biases when performing footprinting. Despite the differences in footprint shapes, the locations of the inferred footprints in ATAC-seq and DNase-seq are largely concordant. However, the protocol-specific sequence biases in conjunction with the sequence content of TFBSs impact the discrimination of footprint from the background, which leads to one method outperforming the other for some TFs. Finally, we address the depth required for reproducible identification of open chromatin regions and TF footprints. Conclusions We demonstrate that the impact of bias correction on footprinting performance is greater for DNase-seq than for ATAC-seq and that DNase-seq footprinting leads to better performance. It is possible to infer concordant footprints by using replicates, highlighting the importance of reproducibility assessment. The results presented here provide an overview of the advantages and limitations of footprinting analyses using ATAC-seq and DNase-seq. Electronic supplementary material The online version of this article (10.1186/s13059-019-1654-y) contains supplementary material, which is available to authorized users.
High-occupancy target (HOT) regions are segments of the genome with unusually high number of transcription factor binding sites. These regions are observed in multiple species and thought to have biological importance due to high transcription factor occupancy. Furthermore, they coincide with house-keeping gene promoters and consequently associated genes are stably expressed across multiple cell types. Despite these features, HOT regions are solely defined using ChIP-seq experiments and shown to lack canonical motifs for transcription factors that are thought to be bound there. Although, ChIP-seq experiments are the golden standard for finding genome-wide binding sites of a protein, they are not noise free. Here, we show that HOT regions are likely to be ChIP-seq artifacts and they are similar to previously proposed ‘hyper-ChIPable’ regions. Using ChIP-seq data sets for knocked-out transcription factors, we demonstrate presence of false positive signals on HOT regions. We observe sequence characteristics and genomic features that are discriminatory of HOT regions, such as GC/CpG-rich k-mers, enrichment of RNA–DNA hybrids (R-loops) and DNA tertiary structures (G-quadruplex DNA). The artificial ChIP-seq enrichment on HOT regions could be associated to these discriminatory features. Furthermore, we propose strategies to deal with such artifacts for the future ChIP-seq studies.
In bioinformatics, as well as other computationally intensive research fields, there is a need for workflows that can reliably produce consistent output, from known sources, independent of the software environment or configuration settings of the machine on which they are executed. Indeed, this is essential for controlled comparison between different observations and for the wider dissemination of workflows. However, providing this type of reproducibility and traceability is often complicated by the need to accommodate the myriad dependencies included in a larger body of software, each of which generally comes in various versions. Moreover, in many fields (bioinformatics being a prime example), these versions are subject to continual change due to rapidly evolving technologies, further complicating problems related to reproducibility. Here, we propose a principled approach for building analysis pipelines and managing their dependencies with GNU Guix. As a case study to demonstrate the utility of our approach, we present a set of highly reproducible pipelines called PiGx for the analysis of RNA sequencing, chromatin immunoprecipitation sequencing, bisulfite-treated DNA sequencing, and single-cell resolution RNA sequencing. All pipelines process raw experimental data and generate reports containing publication-ready plots and figures, with interactive report elements and standard observables. Users may install these highly reproducible packages and apply them to their own datasets without any special computational expertise beyond the use of the command line. We hope such a toolkit will provide immediate benefit to laboratory workers wishing to process their own datasets or bioinformaticians seeking to automate all, or parts of, their analyses. In the long term, we hope our approach to reproducibility will serve as a blueprint for reproducible workflows in other areas. Our pipelines, along with their corresponding documentation and sample reports, are available at http://bioinformatics.mdc-berlin.de/pigx
MicroRNAs (miRNAs) are key mediators of post-transcriptional gene expression silencing. So far, no comprehensive experimental annotation of functional miRNA target sites exists in Drosophila . Here, we generated a transcriptome-wide in vivo map of miRNA-mRNA interactions in Drosophila melanogaster , making use of single nucleotide resolution in Argonaute1 (AGO1) crosslinking and immunoprecipitation (CLIP) data. Absolute quantification of cellular miRNA levels presents the miRNA pool in Drosophila cell lines to be more diverse than previously reported. Benchmarking two CLIP approaches, we identify a similar predictive potential to unambiguously assign thousands of miRNA-mRNA pairs from AGO1 interaction data at unprecedented depth, achieving higher signal-to-noise ratios than with computational methods alone. Quantitative RNA-seq and sub-codon resolution ribosomal footprinting data upon AGO1 depletion enabled the determination of miRNA-mediated effects on target expression and translation. We thus provide the first comprehensive resource of miRNA target sites and their quantitative functional impact in Drosophila .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.