Controlled drug delivery is a crucial area of study for improving the targeted availability of drugs; several polymer systems have been applied for the formulation of drug delivery vehicles, including linear amphiphilic block copolymers, but with some limitations manifested in their ability to form only nanoaggregates such as polymersomes or vesicles within a narrow range of hydrophobic/hydrophilic balance, which can be problematic. For this, multi-arm architecture has emerged as an efficient alternative that overcame these challenges, with many interesting advantages such as reducing critical micellar concentrations, producing smaller particles, allowing for various functional compositions, and ensuring prolonged and continuous drug release. This review focuses on examining the key variables that influence the customization of multi-arm architecture assemblies based on polycaprolactone and their impact on drug loading and delivery. Specifically, this study focuses on the investigation of the structure–property relationships in these formulations, including the thermal properties presented by this architecture. Furthermore, this work will emphasize the importance of the type of architecture, chain topology, self-assembly parameters, and comparison between multi-arm structures and linear counterparts in relation to their impact on their performance as nanocarriers. By understanding these relationships, more effective multi-arm polymers can be designed with appropriate characteristics for their intended applications.
Hydroxyethyl cellulose (HEC) is considered one of the most important hydro-soluble cellulose derivatives, thanks to its biocompatibility and biodegradability profile. In this work, a facile synthesis methodology was developed to graft ionic liquids onto the HEC ester. Firstly, a low Tg (glass transition temperature) glassy brominated hydrophobic ester based on HEC was prepared. By regioselective nucleophilic substitution of bromine with imidazole and pyridine derivatives, HEC-ILs (Ionic liquids) with a high DS (degree of substitution) were elaborated in a second step. The synthesized HEC-ILs were characterized by nuclear magnetic resonance ( 1 H , 13 C NMR), elemental analysis (CHNO), Fourier transform infrared spectroscopy-Attenuated total reflection (FTIR-ATR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Zeta potential was used to verify the presence of permanent positive charge.Contact angle measurements were exploited to follow the reorganization of the surface of HEC-ILs in contact with water. A theoretical study was carried out to investigate the intra-and intermolecular interactions of polymer chains. The prepared cationic HEC derivatives have attractive properties such as their amphiphilic and glassy character, solubility in water, and a permanent positive charge. Such properties open a wide range of applications in the field of drug delivery and the complexation of anionic molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.