Global climate change is expected to shift species ranges polewards, with a risk of range contractions and population declines of especially high‐Arctic species. We built species distribution models for Svalbard‐nesting pink‐footed geese to relate their occurrence to environmental and climatic variables, and used the models to predict their distribution under a warmer climate scenario. The most parsimonious model included mean May temperature, the number of frost‐free months and the proportion of moist and wet moss‐dominated vegetation in the area. The two climate variables are indicators for whether geese can physiologically fulfil the breeding cycle or not and the moss vegetation is an indicator of suitable feeding conditions. Projections of the distribution to warmer climate scenarios propose a large north‐ and eastward expansion of the potential breeding range on Svalbard even at modest temperature increases (1 and 2 °C increase in summer temperature, respectively). Contrary to recent suggestions regarding future distributions of Arctic wildlife, we predict that warming may lead to a further growth in population size of, at least some, Arctic breeding geese.
Wildlife management strategies can be improved by accurate predictions of species distributions and sound estimates of population sizes. Species distribution models that relate occurrence or abundance of a species to environmental predictors can be applied for both purposes. We build a generalized linear model relating the distribution of breeding Tawny Owls (Strix aluco) to remotely sensed environmental data to estimate the current distribution of breeding territories throughout Denmark. Additionally, we apply three different methods to calculate population estimates from the model predictions. The most parsimonious model includes only coverage of deciduous forest and its squared effect as significant predictors. Correspondence between predictions of breeding territories and atlas data on breeding Tawny Owls is high (73%), indicating that our model captures an essential part of this species' habitat requirements. The three population estimates suggests the number of breeding pairs in Denmark to be *4,800, *7,200, or *20,500, respectively. This case adds to the existing body of literature that illustrates that species distribution models can be useful to predict the distribution of species and for estimating population size. ZusammenfassungVorhersagen zur Verbreitung des Waldkauzes (Strix aluco) in Dänemark auf der Ebene von Einzelterritorien Managementstrategien von Wildtieren lassen sich maß-geblich verbessern, indem akkurate Vorhersagen zur Verbreitung von Arten getroffen und ihre Populationsgrö-ßen gut fundiert geschätzt werden. Artverbreitungsmodelle, die das Auftreten und die Häufigkeit einer Art zu Umweltfaktoren in Beziehung setzen, können für beide Zwecke verwendet werden. Um die derzeitige Verbreitung von Brutrevieren des Waldkauzes über ganz Dänemark abzuschätzen, verschnitten wir in einem Generalized Linear Model dessen Brutverbreitung mit fernerkundeten Daten bestimmter Umweltfaktoren. Darüber hinaus verwendeten wir drei verschiedene Methoden um aus den Vorhersagen des Modells die Populationsgröße zu berechnen. Das einfachste Modell beinhaltet als signifikante Vorhersagefaktoren lediglich die Laubwaldbedeckung und ihre quadratischen Effekte. Die Passung zwischen vorhergesagten Brutterritorien und Atlasdaten von Waldkauzbruten ist hoch (73%), was den Schluss zulässt, dass unser Modell einen wesentlichen Teil der Habitatansprüche dieser Art erfasst. Die drei Populationsschätzungen belaufen sich für Dänemark auf Zahlen von *4,800, *7,200, bzw. *20,500 Brutpaaren. Der vorliegende Fall ist ein Beitrag zur Menge an bestehender Literatur, die zeigt, dass Artverbreitungsmodelle für die Vorhersage zur Verbreitung von Arten und für die Bestimmung der Populationsgröße genutzt werden können.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.