This research incorporates shaking table testing of scale wrap faced soil wall models to evaluate the seismic response of embankment. Currently the seismic designs of highway or railway embankment rely on little or no empirical data for calibrating numerical simulations. This research is working towards filling that empirical data gap. The specific purpose of the study was to evaluate the seismic response of constructed embankment model regarding the different input base accelerations with fixed frequency. A series of one-dimensional (1D) shaking table tests (0.05g, 0.1g, 0.15g and 0.2g), were performed on a 0.4 meters high wrap faced reinforced-soil wall model. Additionally, it was placed over 0.3 meters high soft clayey foundation. Predominantly, the influence of the base acceleration on the seismic response was studied in this paper. The physical models were subjected to harmonic sinusoidal input motions at a fixed frequency of 1 Hz, in order to assess the seismic behavior. The effects of parameters such as acceleration amplitudes and surcharge pressures on the seismic response of the model walls were considered. The relative density of the backfill material was kept fixed at 60%. The results of this study reveal that input accelerations and surcharge load had significant influence on the model wall, pore water pressure, and changes along the elevation. Acceleration response advances with the increase in base acceleration, so the difference being more perceptible at higher elevations. The pore water pressures were found to be high for high base shaking and low surcharge pressures at higher elevations. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining wall under different test conditions resting on soft clay.
The main objective of this research was to model the zonation of wrap faced embankment on soft clay foundation, by applying a shake table test. Also, to investigate the dynamic behaviors of clay soil, such as acceleration amplification, displacement and pore water pressure of wrap faced embankment. This was done with respect to changes in frequencies of 1 Hz, 3 Hz, 5 Hz, 10 Hz, 12 Hz and 15 Hz respectively. Constant acceleration (0.1 g) and surcharge (19 Kg) were applied by using a laminar box, placed on a shake table testing machine. The main elements of this research were the laboratory test, which was used for preparing reconstitute soil samples, and wrap faced embankment with frequency arrangement. After applying all test parameters, dynamic parameters were increased by rise in elevation with respect to frequency. The result shows that the maximum dynamic parameters were found at the frequency of 10 Hz. It is beneficial to the relative performances of the wrap faced embankment, which is the updated design parameter.
Keywords: Seismic; Clay Soil; Frequency; Shake Table Test; Wrap Faced; Soil Zonation
Copyright (c) 2020 Geosfera Indonesia Journal and Department of Geography Education, University of Jember
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.