OBJECTIVE-We investigated the role of cytochrome P450 of the 4A family (CYP4A), its metabolites, and NADPH oxidases both in reactive oxygen species (ROS) production and apoptosis of podocytes exposed to high glucose and in OVE26 mice, a model of type 1 diabetes.RESEARCH DESIGN AND METHODS-Apoptosis, albuminuria, ROS generation, NADPH superoxide generation, CYP4A and Nox protein expression, and mRNA levels were measured in vitro and in vivo.RESULTS-Exposure of mouse podocytes to high glucose resulted in apoptosis, with approximately one-third of the cells being apoptotic by 72 h. High-glucose treatment increased ROS generation and was associated with sequential upregulation of CYP4A and an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and Nox oxidases. This is consistent with the observation of delayed induction of NADPH oxidase activity by high glucose. The effects of high glucose on NADPH oxidase activity, Nox proteins and mRNA expression, and apoptosis were blocked by N-hydroxy-NЈ-(4-butyl-2-methylphenol) formamidine (HET0016), an inhibitor of CYP4A, and were mimicked by 20-HETE. CYP4A and Nox oxidase expression was upregulated in glomeruli of type 1 diabetic OVE26 mice. Treatment of OVE26 mice with HET0016 decreased NADPH oxidase activity and Nox1 and Nox4 protein expression and ameliorated apoptosis and albuminuria.CONCLUSIONS-Generation of ROS by CYP4A monooxygenases, 20-HETE, and Nox oxidases is involved in podocyte apoptosis in vitro and in vivo. Inhibition of selected cytochrome P450 isoforms prevented podocyte apoptosis and reduced proteinuria in diabetes.
The low but known risk of bacterial contamination has emerged as the greatest residual threat of transfusion-transmitted diseases. Label-free detection of a bacterial model, Escherichia coli, is performed using nonfaradic electrochemical impedance spectroscopy (EIS). Biotinylated polyclonal anti-E. coli is linked to a mixed self-assembled monolayer (SAM) on a gold electrode through a strong biotin-neutravidin interaction. The binding of one antibody molecule for 3.6 neutravidin molecules is determined using the surface plasmon resonance (SPR). The detection limit of E. coli found by SPR is 10(7) cfu/mL. After modeling the impedance Nyquist plot of E. coli/anti-E. coli/mixed SAM/gold electrode for increasing concentrations of E. coli (whole bacteria or lysed bacteria), the main parameter that is modified is the polarization resistance RP. A sigmoid variation of RP is observed when the log concentration of bacteria (whole or lysed) increases. A concentration of 10 cfu/mL whole bacteria is detected by EIS measurements while 103 cfu/mL is detected for lysed E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.