The topical anti-inflammatory activity of four extracts from Thymus broussonetii Boiss (Labiatae) leaves, a herbal drug used in Moroccan traditional medicine, has been studied using the croton oil ear test in mice. A bioassay-oriented fractionation revealed that the pharmacological activity is mainly in the chloroform extract. Fractionation and analysis of this extract allowed the identification of ursolic acid and oleanolic acid as the main anti-inflammatory principles. Some flavonoids (luteolin, eriodictyol, thymonin) and glycosides (luteolin-7-O-glucoside, luteolin-3'-O-glucuronide, eriodictyol-7-O-glucoside) were also isolated from the methanol extract.
Many derivatives of rutin (Rt) and its metabolite quercetin (Q) are employed in clinics for cardiovascular chronic pathology, and are also known for their antiulcer behavior in vivo and antiproliferative and antimutagenic activity in vitro. Unfortunately, the absorption of quercetin and rutin from the gastrointestinal tract is slow and irregular, probably due to their very slight solubility in water and slow dissolution rate. In this work the dissolution rate of the drugs from oral formulations has been improved using some enhancers such as cross-linked sodium carboxy, methylcellulose (CMC-XL), sodium carboxymethylstarch (E), and cross-linked polyvinylpyrrolidone (P). The drugs were loaded on the hydrophilic carriers by different techniques such as mixing or co-milling. The in vitro dissolution profiles of the mixed or co-milled drug/polymer systems, obtained in various media with different pH, were compared. The results show that the drug dissolution rate from the co-milled drug/carrier systems is faster than that from mixed systems, and CMC-XL and sodium carboxymethylstarch systems are able to enhance the dissolution rate. For this reason, these co-milled drug/carrier systems were used for the production of both fast- and slow-release tablets. The co-milled drug/CMC-XL system was used for the preparation of fast-release tablets containing rutin, while three different fast-release tablets were formulated and tested using respectively Q/CMC-XL, Q/E, and Q/P co-milled systems. The effect of the presence of sodium lauryl sulfate in the aqueous medium on the dissolution profile of flavonoids alone was also studied. The prolonged-release formulations have been developed using hydroxypropylmethylcellulose (HPMC) of different viscosity grades as retarding polymer. An extended release of the drugs for times ranging from 6 to 14 hr could be obtained, depending on the type and viscosity of the HPMC used.
Post-COVID syndrome or long COVID is defined as the persistence of symptoms after confirmed SARS-CoV-2 infection, the pathogen responsible for coronavirus disease. The content herein presented reviews the reported long-term consequences and aftereffects of COVID-19 infection and the potential strategies to adopt for their management. Recent studies have shown that severe forms of COVID-19 can progress into acute respiratory distress syndrome (ARDS), a predisposing factor of pulmonary fibrosis that can irreversibly compromise respiratory function. Considering that the most serious complications are observed in the airways, the inhalation delivery of drugs directly to the lungs should be preferred, since it allows to lower the dose and systemic side effects. Although further studies are needed to optimize these techniques, recent studies have also shown the importance of in vitro models to recreate the SARS-CoV-2 infection and study its sequelae. The information reported suggests the necessity to develop new inhalation therapies in order to improve the quality of life of patients who suffer from this condition.
Fresh juice from bergamot (Citrus bergamia Risso) has been studied to evaluate the polyphenolic composition by HPLC-DAD analysis and total polyphenols content by UV method. The main constituent, Naringin, has been selected as analytical and biological marker of the juice. Juice has been loaded onto maltodextrin matrix by spray-drying. The produced maltodextrin/juice powder (BMP) showed neither significant change in total polyphenols content nor decrease in antioxidant properties with respect to fresh juice. Moreover, BMP displayed high in vitro dissolution rate of the bioactive constituents in water and in simulated biological fluids. BMP appears as promising functional raw material for food, nutraceutical and pharmaceutical products. With this aim, a formulation study to develop tablets (BMT) for oral administration has been also performed. The produced solid oral dosage form preserved high polyphenols content, showed complete disaggregation in few minutes and satisfying dissolution rate of the bioactive constituents in simulated biological fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.