Foot-and-mouth disease (FMD) in the UK provides an ideal opportunity to explore optimal control measures for an infectious disease. The presence of fine-scale spatio-temporal data for the 2001 epidemic has allowed the development of epidemiological models that are more accurate than those generally created for other epidemics and provide the opportunity to explore a variety of alternative control measures. Vaccination was not used during the 2001 epidemic; however, the recent DEFRA (Department for Environment Food and Rural Affairs) contingency plan details how reactive vaccination would be considered in future. Here, using the data from the 2001 epidemic, we consider the optimal deployment of limited vaccination capacity in a complex heterogeneous environment. We use a model of FMD spread to investigate the optimal deployment of reactive ring vaccination of cattle constrained by logistical resources. The predicted optimal ring size is highly dependent upon logistical constraints but is more robust to epidemiological parameters. Other ways of targeting reactive vaccination can significantly reduce the epidemic size; in particular, ignoring the order in which infections are reported and vaccinating those farms closest to any previously reported case can substantially reduce the epidemic. This strategy has the advantage that it rapidly targets new foci of infection and that determining an optimal ring size is unnecessary.
BACKGROUND & AIMS: Inflammatory bowel diseases (IBDs) exist worldwide, with high prevalence in North America. IBD is complex and costly, and its increasing prevalence places a greater stress on health care systems. We aimed to determine the past current, and future prevalences of IBD in Canada. METHODS: We performed a retrospective cohort study using population-based health administrative
Since 2001 models of the spread of foot-and-mouth disease, supported by the data from the UK epidemic, have been expounded as some of the best examples of problem-driven epidemic models. These claims are generally based on a comparison between model results and epidemic data at fairly coarse spatio-temporal resolution. Here, we focus on a comparison between model and data at the individual farm level, assessing the potential of the model to predict the infectious status of farms in both the short and long terms. Although the accuracy with which the model predicts farms reporting infection is between 5 and 15%, these low levels are attributable to the expected level of variation between epidemics, and are comparable to the agreement between two independent model simulations. By contrast, while the accuracy of predicting culls is higher (20-30%), this is lower than expected from the comparison between model epidemics. These results generally support the contention that the type of the model used in 2001 was a reliable representation of the epidemic process, but highlight the difficulties of predicting the complex human response, in terms of control strategies to the perceived epidemic risk.
A powerful and flexible method for fitting dynamic models to missing and censored data is to use the Bayesian paradigm via data-augmented Markov chain Monte Carlo (DA-MCMC). This samples from the joint posterior for the parameters and missing data, but requires high memory overheads for large-scale systems. In addition, designing efficient proposal distributions for the missing data is typically challenging. Pseudo-marginal methods instead integrate across the missing data using a Monte Carlo estimate for the likelihood, generated from multiple independent simulations from the model. These techniques can avoid the high memory requirements of DA-MCMC, and under certain conditions produce the exact marginal posterior distribution for parameters. A novel method is presented for implementing importance sampling for dynamic epidemic models, by conditioning the simulations on sets of validity criteria (based * Corresponding author. Tel.: (+44) 1223 337685.Email address: tjm44@cam.ac.uk (Trevelyan J. McKinley) January 16, 2013 on the model structure) as well as the observed data. The flexibility of these techniques is illustrated using both removal time and final size data from an outbreak of smallpox. It is shown that these approaches can circumvent the need for reversible-jump MCMC, and can allow inference in situations where DA-MCMC is impossible due to computationally infeasible likelihoods. Preprint submitted to Elsevier
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.