Abstract. We present PacLang: an imperative, concurrent, linearlytyped language designed for expressing packet processing applications. PacLang's linear type system ensures that no packet is referenced by more than one thread, but allows multiple references to a packet within a thread . We argue (i) that this property greatly simplifies compilation of high-level programs to the distributed memory architectures of modern Network Processors; and (ii) that PacLang's type system captures that style in which imperative packet processing programs are already written. Claim (ii) is justified by means of a case-study: we describe a PacLang implementation of the IPv4 unicast packet forwarding algorithm. PacLang is formalised by means of an operational semantics and a Unique Ownership theorem formalises its correctness with respect to the type system.
Abstract. Network processors (NPs) typically contain multiple concurrent processing cores. State-of-the-art programming techniques for NPs are invariably low-level, requiring programmers to partition code into concurrent tasks early in the design process. This results in programs that are hard to maintain and hard to port to alternative architectures. This paper presents a new approach in which a high-level program is separated from its partitioning into concurrent tasks. Designers write their programs in a high-level, domain-specific, architecturally-neutral language, but also provide a separate Architecture Mapping Script (AMS). An AMS specifies semantics-preserving transformations that are applied to the program to re-arrange it into a set of tasks appropriate for execution on a particular target architecture. We (i) describe three such transformations: pipeline introduction, pipeline elimination and queue multiplexing; and (ii) specify when each can be safely applied.As a case study we describe an IP packet-forwarder and present an AMS script that partitions it into a form capable of running at 3Gb/s on an Intel IXP2400 Network Processor.
No abstract
Abstract. We propose multi-language synchronization, a novel approach to the problem of migrating code from a legacy language (such as C) to a new language. We maintain two parallel versions of every source file, one in the legacy language, and one in the new language. Both of these files are fully editable, and the two files are kept automatically in sync so that they have the same semantic meaning and, where possible, have the same comments and layout.We propose non-deterministic language translation as a means to implement multi-language synchronization. If a file is modified in language A, we produce a new version in language B by translating the file into a non-deterministic description of many ways that it could be encoded in language B and then choosing the version that is closest to the old file in language B.To demonstrate the feasibility of this approach, we have implemented a translator that can synchronize files written in a straw-man language, Jekyll, with files written in C. Jekyll is a high level functional programming language that has many of the features found in modern programming languages.
Lazy programs are beautiful, but they are slow because they build many thunks. Simple measurements show that most of these thunks are unnecessary: they are in fact always evaluated, or are always cheap. In this paper we describe Optimistic Evaluation --- an evaluation strategy that exploits this observation. Optimistic Evaluation complements compile-time analyses with run-time experiments: it evaluates a thunk speculatively, but has an abortion mechanism to back out if it makes a bad choice. A run-time adaption mechanism records expressions found to be unsuitable for speculative evaluation, and arranges for them to be evaluated more lazily in the future.We have implemented optimistic evaluation in the Glasgow Haskell Compiler. The results are encouraging: many programs speed up significantly (5-25%), some improve dramatically, and none go more than 15% slower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.