Dadaab Refugee camp in Garissa County, Kenya, hosts nearly 340,000 refugees in five subcamps (Dagahaley, Hagadera, Ifo, Ifo2, and Kambioos) (1). On November 18 and 19, 2015, during an ongoing national cholera outbreak (2), two camp residents were evaluated for acute watery diarrhea (three or more stools in ≤24 hours); Vibrio cholerae serogroup O1 serotype Ogawa was isolated from stool specimens collected from both patients. Within 1 week of the report of index cases, an additional 45 cases of acute watery diarrhea were reported. The United Nations High Commissioner for Refugees and their health-sector partners coordinated the cholera response, community outreach and water, sanitation, and hygiene (WASH) activities; Médecins Sans Frontiéres and the International Rescue Committee were involved in management of cholera treatment centers; CDC performed laboratory confirmation of cases and undertook GIS mapping and postoutbreak response assessment; and the Garissa County Government and the Kenya Ministry of Health conducted a case-control study. To prevent future cholera outbreaks, improvements to WASH and enhanced disease surveillance systems in Dadaab camp and the surrounding area are needed.
We estimated the prevalence of extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE), carbapenem-resistant Enterobacterales (CRE), and methicillin-resistant Staphylococcus aureus (MRSA) in communities and hospitals in Kenya to identify human colonization with multidrug-resistant bacteria. Nasal and fecal specimen were collected from inpatients and community residents in Nairobi (urban) and Siaya (rural) counties. Swabs were plated on chromogenic agar to presumptively identify ESCrE, CRE and MRSA isolates. Confirmatory identification and antibiotic susceptibility testing were done using the VITEK®2 instrument. A total of 1999 community residents and 1023 inpatients were enrolled between January 2019 and March 2020. ESCrE colonization was higher in urban than rural communities (52 vs. 45%; P = 0.013) and in urban than rural hospitals (70 vs. 63%; P = 0.032). Overall, ESCrE colonization was ~ 18% higher in hospitals than in corresponding communities. CRE colonization was higher in hospital than community settings (rural: 7 vs. 1%; urban: 17 vs. 1%; with non-overlapping 95% confidence intervals), while MRSA was rarely detected (≤ 3% overall). Human colonization with ESCrE and CRE was common, particularly in hospitals and urban settings. MRSA colonization was uncommon. Evaluation of risk factors and genetic mechanisms of resistance can guide prevention and control efforts tailored to different environments.
Background: The Staphylococcus sciuri group constitutes animal-associated bacteria but can comprise up to 4% of coagulase-negative staphylococci isolated from human clinical samples. They are reservoirs of resistance genes that are transferable to Staphylococcus aureus but their distribution in communities in sub-Saharan Africa is unknown despite the clinical importance of methicillin-resistant S. aureus. Objectives: We characterised methicillin-resistant S. sciuri group isolates from nasal swabs of presumably healthy people living in an informal settlement in Nairobi to identify their resistance patterns, and carriage of two methicillin resistance genes. Method: Presumptive methicillin-resistant S. sciuri group were isolated from HardyCHROM™ methicillin-resistant S. aureus media. Isolate identification and antibiotic susceptibility testing were done using the VITEK®2 Compact. DNA was extracted using the ISOLATE II genomic kit and polymerase chain reaction used to detect mecA and mecC genes. Results: Of 37 presumptive isolates, 43% (16/37) were methicillin-resistant including - S. sciuri (50%; 8/16), S. lentus (31%; 5/16) and S. vitulinus (19%; 3/16). All isolates were susceptible to ciprofloxacin, gentamycin, levofloxacin, moxifloxacin, nitrofurantoin and tigecycline. Resistance was observed to clindamycin (63%), tetracycline (56%), erythromycin (56%), sulfamethoxazole/trimethoprim (25%), daptomycin (19%), rifampicin (13%), doxycycline, linezolid, and vancomycin (each 6%). Most isolates (88%; 14/16) were resistant to at least 2 antibiotic combinations, including methicillin. The mecA and mecC genes were identified in 75% and 50% of isolates, respectively. Conclusion: Colonizing S. sciuri group bacteria can carry resistance to methicillin and other therapeutic antibiotics. This highlights their potential to facilitate antimicrobial resistance transmission in community and hospital settings. Surveillance for emerging multidrug resistant strains should be considered in high transmission settings where human-animal interactions are prevalent. Our study scope precluded identifying other molecular determinants for all the observed resistance phenotypes. Larger studies that address the prevalence and risk factors for colonization with S. sciuri group and adopt a one health approach can complement the surveillance efforts.
Background The spread of extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE) and carbapenem-resistant Enterobacterales (CRE) represents a significant global public health threat. We identified putative risk factors for ESCrE and CRE colonization among patients in 1 urban and 3 rural hospitals in Kenya. Methods During a January 2019 and March 2020 cross-sectional study, stool samples were collected from randomized inpatients and tested for ESCrE and CRE. The Vitek2 instrument was used for isolate confirmation and antibiotic susceptibility testing, and least absolute shrinkage and selection operator (LASSO) regression models were used to identify colonization risk factors while varying antibiotic use measures. Results Most (76%) of the 840 enrolled participants received ≥1 antibiotic in the 14 days preceding their enrollment, primarily ceftriaxone (46%), metronidazole (28%), or benzylpenicillin-gentamycin (23%). For LASSO models that included ceftriaxone administration, ESCrE colonization odds were higher among patients hospitalized for ≥3 days (odds ratio, 2.32 [95% confidence interval, 1.6–3.37]; P < .001), intubated patients (1.73 [1.03–2.91]; P = .009), and persons living with human immunodeficiency virus (1.70 [1.03–2.8]; P = .029). CRE colonization odds were higher among patients receiving ceftriaxone (odds ratio, 2.23 [95% confidence interval, 1.14–4.38]; P = .025) and for every additional day of antibiotic use (1.08 [1.03–1.13]; P = .002). Conclusions While CRE colonization was strongly associated with ceftriaxone use and duration of antibiotic use, the odds of ESCrE colonization increased with exposure to the hospital setting and invasive medical devices, which may reflect nosocomial transmission. These data suggest several areas where hospitals can intervene to prevent colonization among hospitalized patients, both through robust infection prevention and control practices and antibiotic stewardship programs.
Background Characterization of antimicrobial-resistant organism (ARO) colonization is critical to understand transmission dynamics and infection risk, however data in resource-limited settings are scare. We estimated the prevalence of Enterobacterales colonization with extended-spectrum cephalosporin-resistance (ESCrE), carbapenem-resistance (CRE) and methicillin-resistant Staphylococcus aureus (MRSA) among community residents and hospitalized patients in rural (Siaya County) and urban (Kibera) Kenya. Methods Community-dwelling adults and children were enrolled via cluster randomized sampling. Inpatients of all ages were enrolled by simple random sampling. Stool/rectal and nasal swabs were collected and screened for ESCrE, CRE and MRSA, respectively, using HardyChrom™ media. Vitek2® was used for isolate confirmation and antibiotic susceptibility testing. Fisher’s exact tests were used to compare prevalence of AROs. Results The prevalence of ESCrE was higher for the urban hospital (69.8%, 263/377) compared to rural hospitals (62.7%, 298/475, P=0.04); a similar pattern was evident for CRE (16.7%, 63/377 and 6.5%, 31/475, respectively, P< 0.01). The prevalence of MRSA was 3.2% for both urban and rural hospitals (P=0.99). For adults, the prevalence of ESCrE was higher in Kibera households (51.4%, 346/673) compared to Siaya (44.6%, 283/634, P=0.02) while the prevalence of both CRE and MRSA was < 3% for both areas and did not differ significantly (CRE, P=0.13, MRSA, P=0.14). There was no significant difference between urban and rural children for ESCrE (47.7%, 74/155 and 53.4%, 135/253, P=0.31); both CRE and MRSA were rarely detected (< 2%) with no difference across settings (CRE, P=1.0, MRSA, P=0.42). Among Enterobacteriaceae recovered, Escherichia coli and Klebsiella spp. predominated. Conclusion Colonization with AROs were widespread in households and hospitals in urban and rural areas. Hospitals with elevated prevalence of highly transmissible AROs should consider whether implementation of colonization screening can be incorporated as part of their infection prevention and control programs. Risk factors for ARO colonization should be elucidated to identify novel prevention strategies. Disclosures All Authors: No reported disclosures
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.