To better understand the cellular and molecular responses to overexposure to millimeter waves, alterations in the gene expression profile and histology of skin after exposure to 35 GHz radiofrequency radiation were investigated. Rats were subjected to sham exposure, to 42 degrees C environmental heat, or to 35 GHz millimeter waves at 75 mW/cm(2). Skin samples were collected at 6 and 24 h after exposure for Affymetrix GeneChip analysis. The skin was harvested from a separate group of rats at 3-6 h or 24-48 h after exposure for histopathology analysis. Microscopic findings observed in the dermis of rats exposed to 35 GHz millimeter waves included aggregation of neutrophils in vessels, degeneration of stromal cells, and breakdown of collagen. Changes were detected in 56 genes at 6 h and 58 genes at 24 h in the millimeter-wave-exposed rats. Genes associated with regulation of transcription, protein folding, oxidative stress, immune response, and tissue matrix turnover were affected at both times. At 24 h, more genes related to extracellular matrix structure and chemokine activity were altered. Up-regulation of Hspa1a, Timp1, S100a9, Ccl2 and Angptl4 at 24 h by 35 GHz millimeter-wave exposure was confirmed by real-time RT-PCR. These results obtained from histopathology, microarrays and RT-PCR indicate that prolonged exposure to 35 GHz millimeter waves causes thermally related stress and injury in skin while triggering repair processes involving inflammation and tissue matrix recovery.
Electromagnetic fields at millimeter wave lengths are being developed for commercial and military use at power levels that can cause temperature increases in the skin. Previous work suggests that sustained exposure to millimeter waves causes greater heating of skin, leading to faster induction of circulatory failure than exposure to environmental heat (EH). We tested this hypothesis in three separate experiments by comparing temperature changes in skin, subcutis, and colon, and the time to reach circulatory collapse (mean arterial blood pressure, 20 mmHg) in male Sprague-Dawley rats exposed to the following conditions that produced similar rates of body core heating within each experiment: (1) EH at 42 degrees C, 35 GHz at 75 mW/cm, or 94 GHz at 75 mW/cm under ketamine and xylazine anesthesia; (2) EH at 43 degrees C, 35 GHz at 90 mW/cm, or 94 GHz at 90 mW/cm under ketamine and xylazine anesthesia; and (3) EH at 42 degrees C, 35 GHz at 90 mW/cm, or 94 GHz at 75 mW/cm under isoflurane anesthesia. In all three experiments, the rate and amount of temperature increase at the subcutis and skin surface differed significantly in the rank order of 94 GHz more than 35 GHz more than EH. The time to reach circulatory collapse was significantly less only for rats exposed to 94 GHz at 90 mW/cm, the group with the greatest rate of skin and subcutis heating of all groups in this study, compared with both the 35 GHz at 90 mW/cm and the EH at 43 degrees C groups. These data indicate that body core heating is the major determinant of induction of hemodynamic collapse, and the influence of heating of the skin and subcutis becomes significant only when a certain threshold rate of heating of these tissues is exceeded.
A macrophage assay and proteomic screening were used to investigate the biological activity of soluble factors in the plasma of millimeter wave-exposed rats. NR8383 rat macrophages were incubated for 24 h with 10% plasma from male Sprague-Dawley rats that had been exposed to sham conditions, or exposed to 42 °C environmental heat or 35 GHz millimeter waves at 75 mW/cm² until core temperature reached 41.0 °C. Two-dimensional polyacrylamide gel electrophoresis, image analysis, and Western blotting were used to analyze approximately 600 protein spots in the cell lysates for changes in protein abundance and levels of 3-nitrotyrosine, a marker of macrophage stimulation. Proteins of interest were identified using peptide mass fingerprinting. Compared to plasma from sham-exposed rats, plasma from environmental heat- or millimeter wave-exposed rats increased the expression of 11 proteins, and levels of 3-nitrotyrosine in seven proteins, in the NR8383 cells. These altered proteins are associated with inflammation, oxidative stress, and energy metabolism. Findings of this study indicate both environmental heat and 35 GHz millimeter wave exposure elicit the release of macrophage-activating mediators into the plasma of rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.