Athletes and researchers could benefit from a simple and universally accepted technique to determine whether humans are well-hydrated, euhydrated, or hypohydrated. Two laboratory studies (A, B) and one field study (C) were conducted to determine if urine color () indicates hydration status accurately and to clarify the interchangeability of , urine osmolality (), and urine specific gravity () in research. , , and were not significantly correlated with plasma osmolality, plasma sodium, or hemato-crit. This suggested that these hematologic measurements are not as sensitive to mild hypohydration (between days) as the selected urinary indices are. When the data from A, B, and C were combined, was strongly correlated with and U„sm. It was concluded that (a) may be used in athletic/industrial settings or field studies, where close estimates of or are acceptable, but should not be utilized in laboratories where greater precision and accuracy are required, and (b) and may be used interchangeably to determine hydration status.
This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill).
P(osm) is the only useful marker for static dehydration assessment. P(osm), U(sg), and B(m) are valid markers in the setting of dynamic dehydration assessment.
Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.