Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy.
Among Parkinson’s disease (PD) motor symptoms, freezing of gait (FOG) may\ud be the most incapacitating. FOG episodes may result in falls and reduce patients’\ud quality of life. Accurate assessment of FOG would provide objective information\ud to neurologists about the patient’s condition and the symptom’s characteristics,\ud while it could enable non-pharmacologic support based on rhythmic\ud cues.\ud This paper is, to the best of our knowledge, the first study to propose a\ud deep learning method for detecting FOG episodes in PD patients. This model\ud is trained using a novel spectral data representation strategy which considers information from both the previous and current signal windows. Our approach\ud was evaluated using data collected by a waist-placed inertial measurement unit\ud from 21 PD patients who manifested FOG episodes. These data were also employed\ud to reproduce the state-of-the-art methodologies, which served to perform\ud a comparative study to our FOG monitoring system.\ud The results of this study demonstrate that our approach successfully outperforms\ud the state-of-the-art methods for automatic FOG detection. Precisely, the\ud deep learning model achieved 90% for the geometric mean between sensitivity\ud and specificity, whereas the state-of-the-art methods were unable to surpass the\ud 83% for the same metric.Peer ReviewedPostprint (published version
Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
Chronically ill patients are complex health care cases that require the coordinated interaction of multiple professionals. A correct intervention of these sort of patients entails the accurate analysis of the conditions of each concrete patient and the adaptation of evidence-based standard intervention plans to these conditions. There are some other clinical circumstances such as wrong diagnoses, unobserved comorbidities, missing information, unobserved related diseases or prevention, whose detection depends on the capacities of deduction of the professionals involved. In this paper, we introduce an ontology for the care of chronically ill patients and implement two personalization processes and a decision support tool. The first personalization process adapts the contents of the ontology to the particularities observed in the health-care record of a given concrete patient, automatically providing a personalized ontology containing only the clinical information that is relevant for health-care professionals to manage that patient. The second personalization process uses the personalized ontology of a patient to automatically transform intervention plans describing health-care general treatments into individual intervention plans. For comorbid patients, this process concludes with the semi-automatic integration of several individual plans into a single personalized plan. Finally, the ontology is also used as the knowledge base of a decision support tool that helps health-care professionals to detect anomalous circumstances such as wrong diagnoses, unobserved comorbidities, missing information, unobserved related diseases, or preventive actions. Seven health-care centers participating in the K4CARE project, together with the group SAGESA and the Local Health System in the town of Pollenza have served as the validation platform for these two processes and tool. Health-care professionals participating in the evaluation agree about the average quality 84% (5.9/7.0) and utility 90% (6.3/7.0) of the tools and also about the correct reasoning of the decision support tool, according to clinical standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.