Reservoirs are fundamental infrastructures for the management of water resources. Constructions around them can negatively impact their quality. Such unauthorized constructions can be monitored by land cover mapping (LCM) remote sensing (RS) images. In recent years, deep learning (DL) has attracted considerable attention as a method for LCM the RS imagery and has achieved remarkable success. In this paper, we develop a new approach based on DL and image processing techniques for man-made object segmentation around the reservoirs. In order to segment man-made objects around the reservoirs in an end-to-end procedure, segmenting reservoirs and identifying the region of interest (RoI) around them are essential. In the proposed two-phase workflow, the reservoir is initially segmented using a DL model. A post-processing stage is proposed to remove errors such as floating vegetation. Next, the RoI around the reservoir (RoIaR) is identified using the proposed image processing techniques. Finally, the man-made objects in the RoIaR are segmented using a DL architecture. To illustrate the proposed approach, our task of interest is segmenting man-made objects around some of the most important reservoirs in Brazil. Therefore, we trained the proposed workflow using collected Google Earth (GE) images of eight reservoirs in Brazil over two different years. The U-Net-based and SegNet-based architectures are trained to segment the reservoirs. To segment man-made objects in the RoIaR, we trained and evaluated four possible architectures, U-Net, FPN, LinkNet, and PSPNet. Although the collected data has a high diversity (for example, they belong to different states, seasons, resolutions, etc.), we achieved good performances in both phases. The highest achieved F1-score for the test sets of phase-1 and phase-2 semantic segmentation stages are 96.53% and 90.32%, respectively. Furthermore, applying the proposed post-processing to the output of reservoir segmentation improves the precision in all studied reservoirs except two cases. We validated the prepared workflow with a reservoir dataset outside the training reservoirs. The F1-scores of the phase-1 semantic segmentation stage, post-processing stage, and phase-2 semantic segmentation stage are 92.54%, 94.68%, and 88.11%, respectively, which show high generalization ability of the prepared workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.