In this paper we present a new characterization of Sobolev spaces on R n . Our characterizing condition is obtained via a quadratic multiscale expression which exploits the particular symmetry properties of Euclidean space. An interesting feature of our condition is that depends only on the metric of R n and the Lebesgue measure, so that one can define Sobolev spaces of any order of smoothness on any metric measure space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.