Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias.
An understanding of the neurobiological mechanisms involved in the regulation of fear is essential for the development of new treatments for anxiety disorders, such as phobias, panic, and post-traumatic stress disorders (PTSD). Orexins, also known as hypocretins, are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system. Although this system was initially believed to be primarily involved in the regulation of feeding behavior, recent studies have shown that orexins also modulate neural circuits implicated in the expression and extinction of fear memories. Here, we discuss recent findings involving orexins in anxiety disorders and current clinical trials using orexin ligands that could be applied to identify new therapies for diseases characterized by pathological fear.
Hypocretin/orexin signaling is critically involved in relapse to drug-seeking behaviors. In this study, we investigated the involvement of the hypocretin system in the reinstatement of nicotine-seeking behavior induced by nicotine-associated cues. Pretreatment with the hypocretin receptor-1 antagonist SB334867, but not with the hypocretin receptor-2 antagonist TCSOX229, attenuated cue-induced reinstatement of nicotine-seeking, which was associated with an activation of hypocretin neurons of the lateral and perifornical hypothalamic areas. In addition, relapse to nicotine-seeking increased the phosphorylation levels of GluR2-Ser880, NR1-Ser890, and p38 MAPK in the nucleus accumbens (NAc), but not in the prefrontal cortex. Notably, phosphorylation levels of NR1-Ser890 and p38 MAPK, but not GluR2-Ser880, were dependent on hypocretin receptor-1 activation. The intra-accumbens infusion of the protein kinase C (PKC) inhibitor NPC-15437 reduced nicotine-seeking behavior elicited by drug-paired cues consistent with the PKC-dependent phosphorylations of GluR2-Ser880 and NR1-Ser890. SB334867 failed to modify cue-induced reinstatement of food-seeking, which did not produce any biochemical changes in the NAc. These data identify hypocretin receptor-1 and PKC signaling as potential targets for the treatment of relapse to nicotine-seeking induced by nicotine-associated cues.
These findings underline the interest of CBR as a target to improve cognitive performance during early nicotine withdrawal. Cognitive deficits in early abstinence are associated with increased relapse risk.
∆ 9-tetrahydrocannabinol (THC) consumption during adolescence is reported to be a risk factor for the appearance of psychiatric disorders later in life. The interaction between genetic or environmental events and cannabinoid exposure in the adolescent period can also contribute to exacerbate behavioural deficits in adulthood. Here we investigate the effects of THC treatment as well as the consequences of concomitant THC and stress exposure during adolescence in the extinction of fear memory in adult mice. Adolescent mice treated with THC and exposed to stress exhibit impaired cued fear extinction in adulthood. However, no effect was observed in animals exposed to these two factors separately. Notably, resistance to fear extinction was associated with decreased neuronal activity in the basolateral amygdala (BLA) and the infralimbic prefrontal cortex, suggesting a long-term dysregulation of the fear circuit. These changes in neuronal activation were paralleled with structural plasticity alterations. Indeed, an increase of immature dendritic spines in pyramidal neurons of the BLA was revealed in mice simultaneously exposed to THC and stress. Corticosterone levels were also enhanced after the cued fear conditioning session in the same experimental group. These results show that an interaction between cannabis exposure and stress during adolescence may lead to long-term anxiety disorders characterized by the presence of pathological fear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.