To determine the mechanism of the cardiac dilatation and reduced contractility of obese Zucker Diabetic Fatty rats, myocardial triacylglycerol (TG) was assayed chemically and morphologically. TG was high because of underexpression of fatty acid oxidative enzymes and their transcription factor, peroxisome proliferator-activated receptor-␣. Levels of ceramide, a mediator of apoptosis, were 2-3 times those of controls and inducible nitric oxide synthase levels were 4 times greater than normal. Myocardial DNA laddering, an index of apoptosis, reached 20 times the normal level. Troglitazone therapy lowered myocardial TG and ceramide and completely prevented DNA laddering and loss of cardiac function. In this paper, we conclude that cardiac dysfunction in obesity is caused by lipoapoptosis and is prevented by reducing cardiac lipids. The recent increase in juvenile-onset obesity in the United States (1) predicts that the next generation of obese Americans will have been obese longer than ever before. This portends a higher prevalence of time-dependent complications of the disease, such as insulin resistance, non-insulin-dependent diabetes mellitus, hypertension, coronary artery disease, and other cardiac disorders. The etiology of these complications, which are often grouped together under the term ''metabolic syndrome X'' (2), is not known.We have proposed that the excessive deposition of triacylglycerol (TG) in nonadipose tissues (steatosis) enlarges the intracellular pool of fatty acyl-CoA, thereby providing substrate for nonoxidative metabolic pathways, such as ceramide synthesis, that lead to cell dysfunction and death through apoptosis (3). It seemed possible that this sequence of events, established in the pancreatic islets of genetically obese Zucker Diabetic Fatty (ZDF) rats ( fa͞fa), could also take place in other tissues such as the heart. Obesity-related heart disease, the most serious complication of human obesity, generally is attributed to coexisting disorders such as coronary artery disease and hypertension. Cardiac dysfunction, arrhythmias, cardiomyopathy, and congestive heart failure are seldom ascribed to the direct consequences of obesity, i.e., fatty acid (FA) overload of cardiac myocytes, although the literature does contain clinical reports of cardiomyopathy of obesity that can be reversed by weight loss (4).This study was designed to test the possibility that the same metabolic abnormalities that cause lipotoxicity and lipoapoptosis in the pancreatic  cells of obese rats (3) might also compromise the function and viability of their myocardial cells. We used rats with obesity resulting from a loss-of-function mutation in the leptin receptor (5, 6), the ZDF ( fa͞fa) rat. We observed in their fat-laden hearts evidence of lipoapoptosis accompanied by a profound loss of cardiac function. These abnormalities were completely prevented by antisteatotic therapy. The striking benefit of such therapy on cardiac function in obese rats warrants an effort to determine whether a counterpart of this disorder ...
Like obese humans, Zucker diabetic fatty (ZDF) rats exhibit early  cell compensation for insulin resistance (4-fold  cell hyperplasia) followed by decompensation (>50% loss of  cells). In prediabetic and diabetic ZDF islets, apoptosis measured by DNA laddering is increased 3-and >7-fold, respectively, compared with lean ZDF controls. Ceramide, a fatty acid-containing messenger in cytokineinduced apoptosis, was significantly increased (P < 0.01) in prediabetic and diabetic islets. Free fatty acids (FFAs) in plasma are high (>1 mM) in prediabetic and diabetic ZDF rats; therefore, we cultured prediabetic islets in 1 mM FFA. DNA laddering rose to 19.6% vs. 4.6% in lean control islets, preceded by an 82% increase in ceramide. C 2 -Ceramide without FFA induced DNA laddering, but fumonisin B 1 , a ceramide synthetase inhibitor, completely blocked FFA-induced DNA laddering in cultured ZDF islets. [ H]Palmitate incorporation in [3 H]ceramide in ZDF islets was twice that of controls, but [ 3 H]palmitate oxidation was 77% less. Triacsin C, an inhibitor of fatty acyl-CoA synthetase, and troglitazone, an enhancer of FFA oxidation in ZDF islets, both blocked DNA laddering. These agents also reduced inducible nitric oxide (NO) synthase mRNA and NO production, which are involved in FFA-induced apoptosis. In ZDF obesity,  cell apoptosis is induced by increased FFA via de novo ceramide formation and increased NO production.
I review evidence that leptin is a liporegulatory hormone that controls lipid homeostasis in nonadipose tissues during periods of overnutrition. When adipocytes store excess calories as triacylglycerol (TG), leptin secretion rises so as to prevent accumulation of lipids in nonadipose tissues, which are not adapted for TG storage. Whenever leptin action is lacking, whether through leptin deficiency or leptin resistance, overnutrition causes disease of nonadipose tissues with generalized steatosis, lipotoxicity, and lipoapoptosis. Examples of such disorders of liporegulation include generalized lipodystrophies, mutations of leptin and leptin receptor genes, and diet-induced obesity. Lipotoxicity of pancreatic beta-cells, myocardium, and skeletal muscle leads, respectively, to type 2 diabetes, cardiomyopathy, and insulin resistance. In humans this constellation of abnormalities is referred to as the metabolic syndrome, a major health problem in the United States. When lipids overaccumulate in nonadipose tissues during overnutrition, fatty acids enter deleterious pathways such as ceramide production, which, through increased nitric oxide formation, causes apoptosis of lipid-laden cells, such as beta-cells and cardiomyocytes. Lipoapoptosis can be prevented by caloric restriction, by thiazolidinedione treatment, and by administration of nitric oxide blockers. There is now substantial evidence that complications of human obesity may reflect lipotoxicity similar to that described in rodents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.