During the summer of 1988, measurements of photochemical trace species were made at a coordinated network of seven rural sites in the eastern United States and Canada. At six of these sites concurrent measurements of ozone and the sum of the reactive nitrogen species, NOy, were made, and at four of the sites a measure for the reaction products of the NO x oxidation was obtained. Common to all sites, ozone, in photochemically aged air during the summer, shows an increase with increasing NOy levels, from a background value of 30-40 parts per billion by volume (ppbv)at NOy mixing ratios below 1 ppbv to values between 70 to 100 ppbv at NOy levels of 10 ppbv. Ozone correlates even more closely with the products of the NOx oxidation. The correlations from the different sites agree closely at mixing ratios of the oxidation products below 5 ppbv, but systematic differences appear at higher levels. Variations in the biogenic hydrocarbon emissions may explain these differences. IntroductionElevated and potentially harmful levels of ozone are being found in many rural areas of North America during summer. Daily maximum 03 levels measured in rural areas are often comparable to those found in urban areas and daily average levels can exceed urban levels. There is substantial evidence from field measurements and model calculations that most of this ozone is being produced photochemically from ozone precursors emitted within the region [Research Triangle Institute, 1975; Vukovich et al., 1977Vukovich et al., , 1985Cleveland et al., 1977;Spicer et al., 1979;Wolff and Lioy, 1980;Fehsenfeld et al., 1983;Kelly et al., 1984;Liu et al., 1987]. A similar situation appears to exist for western Europe [Cox et al., 1975;Guicherit and Van Dop, 1977;Hov, 1984]. The photochemical processes responsible for these high levels are thought to be quite similar to the processes that operate in urban photochemical smog but with important differences. In
Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C 5 -alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from ∼1 to 24 ng m -3 in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO x conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.