The mechanism of the antiviral activity of hypericin was characterized and compared with that of rose bengal. Both compounds inactivate enveloped (but not unenveloped) viruses upon illumination by visible light. Human immunodeficiency and vesicular stomatitis viruses were photodynamically inactivated by both dyes at nanomolar concentrations. Photodynamic inactivation of fusion (hemolysis) by vesicular stomatitis, influenza, and Sendai viruses was induced by both dyes under similar conditions (e.g., I50 = 20-50 nM for vesicular stomatitis virus), suggesting that loss of infectivity resulted from inactivation of fusion. Syncytium formation, between cells activated to express human immunodeficiency virus gpl20 on their surfaces and CD4+ cells, was inhibited by illumination in the presence of 1 ,uM hypericin. Hypericin and rose bengal thus exert similar virucidal effects. Both presumably act by the same mechanism-namely, the inactivation of the viral fusion function by singlet oxygen produced upon illumination. The implications of this photodynamic antiviral action for the potential therapeutic usefulness of both hypericin and rose bengal are discussed.
Twenty-five spontaneous temperature-stable revertants of four different temperature-sensitive (ts) M protein mutants (complementation group III: tsG31, tsG33, ts023, and ts089) were sequenced and tested for their ability to inhibit vesicular stomatitis virus RNA polymerase activity in vitro. Consensus sequences of the coding region of each M protein gene were determined, using total viral RNA as template. Fifteen different sequences were found among the 25 revertants; 14 differed from their ts parent by a single amino acid (one nucleotide), and 1 differed by two amino acids (two nucleotides). Amino acids were altered in various positions between residues 64 and 215, representing over 60% of the polypeptide chain. Resequencing of the Glasgow and Orsay wild types and the four ts mutants confirmed previously published differences (Y. Gopalakrishna and J. Lenard, J. Virol., 56:655-659, 1985), and one or two additional differences were found in each. The relative charges of the revertant M proteins, as determined by nonequilibrium pH gradient electrophoresis, were consistent with the deduced sequences in every case. The ability of each revertant M protein to inhibit the RNA polymerase activity of nucleocapsids prepared from its parent ts mutant was also tested. Only 13 of the 25 revertants had M protein with high (wild type-like) polymerase-inhibiting activity, while 5 had low (ts-like) activity, and 7 had intermediate activity, demonstrating that this property is not an essential concomitant of the temperature-stable phenotype. It is concluded that the high reversion frequency observed for these mutants arises from a very high incidence of pseudoreversion, i.e., many different molecular changes can repair the ts phenotype.
Rose bengal inactivated influenza virus upon exposure to light. Infectivity and fusion were inactivated with the same dose dependence, supporting the suggestion that the virucidal activity of photodynamic agents against enveloped viruses may be generally due to inactivation of their fusion protein(s). Concentrations required for inactivation were found to depend upon the ratio of rose bengal to virus, rather than on the nominal aqueous concentration. Fusion-competent virosomes were inactivated similarly to intact virus particles. The HA2 portion of the influenza fusion protein HA underwent two different, apparently mutually exclusive modifications upon illumination with rose bengal: cross-linking, and conversion to a form that moved slightly more slowly on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Inactivation of viral fusion was inhibited by oxygen removal or addition of azide or beta-carotene, and was enhanced by D2O, consistent with partial involvement of singlet oxygen. The possibility of a second mechanism of viral photoinactivation, by direct interaction between the viral fusion protein and the photoactivated dye, is also discussed.
The membrane-reactive, photoactivatable probe 1251-TID {3-(trifluoromethyl)-3-(m-[1251]iodophenyl)-3H-diazirine} was found to label the M protein of vesicular stomatitis virus about 40% as much as G protein in intact virions, in agreement with labeling studies with other probes. By analyzing limited tryptic digestion and specific chemical cleavage products, the label was essentially entirely localized within the first 19, and probably within the first 5 to 10, amino acid residues at the N terminus, identifying this short amphipathic segment as the likely site of interaction of M protein with the viral bilayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.