The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex.
Tryptophan auxotrophs of Escherichia coli in which mutations were mapped to the trpS locus (encoding tryptophanyl-tRNA synthetase) have been previously isolated. We have investigated the tryptophanyl-tRNA synthetase (TrpRS) purified from six auxotrophic strains for changes in amino acid activation and aminoacylation. Steady-state kinetic analyses show that these mutant TrpRS proteins have increases in the apparent KM for tryptophan, decreases in turnover number, or both, without significant changes in the apparent KM for ATP or tRNA(Trp). The crystal structure of a highly homologous tryptophanyl-tRNA synthetase from Bacillus stearothermophilus in a complex with the cognate aminoacyl adenylate allowed us to place the mutations in a structural context. The mutations in the enzymes are located in the KMSKS loop (M196I), in or near the active site (D112E, P129S, A133E) or far from the active site. The last three mutants (T60R, L91F, G329S) could not be predicted by examination of the protein structure as they line an interface between the C-terminal alpha-helix of one subunit and the Rossmann folds of both subunits, thus affecting a specific region of the dimer interface. These results support a role for dimerization in properly configuring the two active sites of the dimeric enzymes in the Trp/Tyr subclass of class I aminoacyl-tRNA synthetases in order to achieve optimal catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.