Jabon (Anthocephalus cadamba) is a fast-growing wood with low quality due to its low density and strength. The quality can be increased by modifying the wood through impregnation with various chemical compounds. In this study, jabon was impregnated with a solution of Fe and immersed in a strong base (NaOH) or a weak base (NH4OH) to form magnetite (Fe3O4) in-situ. This study analysed the use of NaOH and NH4OH in synthesising magnetic jabon wood and evaluated the wood’s characteristics. The impregnation process began with a vacuum of −0.5 bar for 0.5 h and then a pressure of 1 bar for 2 h. The samples subsequently underwent assessment of their dimensional stability, density, and characteristics. The results showed that impregnation with Fe solution followed by NaOH or NH4OH significantly affected the density and dimensional stability of the wood. The polymer weight gain was higher with NaOH, while the anti-swelling efficiency was higher with NH4OH. The density and bulking effect were increased, but the water uptake was decreased. Fourier transform infrared analysis showed the successful synthesis of magnetite. Scanning electron microscopy–energy-dispersive X-ray spectroscopy analysis revealed that magnetite covered the vessel fibre cell walls, and vibrating sample magnetometry analysis showed significant magnetic properties of the wood.
Mangium (Acacia mangium Willd.) is a fast-growing wood that is widely grown in Indonesia. The impregnation method is needed to improve the qualities of the wood. In this study, TiO2 nanoparticle (79.17 nm) was produced using the hydrothermal method. The purpose of this study was to analyze the effect of TiO2 nanoparticle impregnation on the density and dimensional stability of mangium and the effectiveness of the presence of TiO2 nanoparticle in wood in degrading pollutants. The mangium samples (2 cm × 2 cm × 2 cm) were placed inside impregnation tube. The impregnation solutions included water (untreated), 1% TiO2 nanoparticle, and 5% TiO2 nanoparticles. The samples were analyzed for density, weight percent gain (WPG) dan bulking effect (BE). Samples were also analyzed by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). TiO2 nanoparticle resulted in an increase in density, WPG, and BE-treated mangium. Based on XRD and FTIR results, TiO2 nanoparticle was successfully impregnated into mangium wood. Scanning electron microscopy–energy-dispersive X-ray spectroscopy analysis indicated that TiO2 nanoparticle covered the surface of the wood cells. The TiO2-impregnated mangium wood has a higher photocatalyst activity than untreated, indicating better protection from UV radiation and pollutants.
Fast-growing wood is rarely used by the community because of its low quality. This study aimed to modify the sengon (Falcataria moluccana) and jabon (Anthocephalus cadamba) into magnetic wood so they have new functions. In this study, the modification process was performed by impregnating five-level concentrations of Fe3O4 nanoparticles dissolved in two different dispersants, namely water and a mixture of furfuryl alcohol and water. The impregnation process is initiated by a vacuum of -0.5 bar, followed by a pressure of 1 bar for 120 min. The addition of furfuryl alcohol to the impregnation solution significantly increased the physical properties of magnetic wood. The presence of Fe3O4 in wood is also proven by the Fe-O groups observed from the FTIR spectrum analysis. The magnetic field strength also increased as the concentration level of Fe3O4 increased. Based on the results of this research, the best treatment was obtained on magnetic wood of sengon and jabon with furfuryl alcohol and Fe3O4 nanoparticles concentration of 7.5%. Keywords: Fast-growing wood, impregnation, magnetic wood, nanoparticles, nano Fe3O4
The impregnation process is carried out to increase the resistance of wood from the attack of microorganisms such as fungi and termite attacks by placing the wood in a vacuum tube and then placing an impregnan solution into it. The limited ability of impregnation tubes is an obstacle in carrying out research and practicum activities, therefore there needs to be modifications to the impregnation tube so that the impregnation process can provide better results. Verification of the results of impregnation is done by calculating the value of weight percent gain (WPG) and relative standard deviation (%RSD) for the test of the level of appreciation. Based on the results of the experiment the highest %WPG value in the water impregnan solution was obtained from the parameter conditions of the type 3 press vacuum tool, which is with a time of 1 hour and a pressure of 5 bars and is worth (178.29±10.97). The highest %WPG value in boron solution of 5% is obtained from the condition of the type 6 press vacuum tool with a time of 3 hours and a pressure of 5 bars and is worth (5.16±0.45). The smallest %RSD value of water impregnan solution is achieved under the parameter conditions of type 4 tools at 3 hours and pressure 1 bar and is worth 3.99%. The smallest %RSD value of boron impregnan solution is 5% achieved under the parameter conditions of type 2 tools, namely within 1 hour and pressure of 3 bars and is worth 5.36%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.