Abstractspatstat is a package for analyzing spatial point pattern data. Its functionality includes exploratory data analysis, model-fitting, and simulation. It is designed to handle realistic datasets, including inhomogeneous point patterns, spatial sampling regions of arbitrary shape, extra covariate data, and 'marks' attached to the points of the point pattern.A unique feature of spatstat is its generic algorithm for fitting point process models to point pattern data. The interface to this algorithm is a function ppm that is strongly analogous to lm and glm.This paper is a general description of spatstat and an introduction for new users.
This paper describes a technique for computing approximate maximum pseudolikelihood estimates of the parameters of a spatial point process. The method is an extension of Berman & Turner's (1992) device for maximizing the likelihoods of inhomogeneous spatial Poisson processes. For a very wide class of spatial point process models the likelihood is intractable, while the pseudolikelihood is known explicitly, except for the computation of an integral over the sampling region. Approximation of this integral by a finite sum in a special way yields an approximate pseudolikelihood which is formally equivalent to the (weighted) likelihood of a loglinear model with Poisson responses. This can be maximized using standard statistical software for generalized linear or additive models, provided the conditional intensity of the process takes an 'exponential family' form. Using this approach a wide variety of spatial point process models of Gibbs type can be fitted rapidly, incorporating spatial trends, interaction between points, dependence on spatial covariates, and mark information.
Summary. We define residuals for point process models fitted to spatial point pattern data, and we propose diagnostic plots based on them.The residuals apply to any point process model that has a conditional intensity; the model may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Some existing ad hoc methods for model checking (quadrat counts, scan statistic, kernel smoothed intensity and Berman's diagnostic) are recovered as special cases. Diagnostic tools are developed systematically, by using an analogy between our spatial residuals and the usual residuals for (non-spatial) generalized linear models. The conditional intensity λ plays the role of the mean response. This makes it possible to adapt existing knowledge about model validation for generalized linear models to the spatial point process context, giving recommendations for diagnostic plots. A plot of smoothed residuals against spatial location, or against a spatial covariate, is effective in diagnosing spatial trend or covariate effects. Q-Q-plots of the residuals are effective in diagnosing interpoint interaction.
Summary. We describe practical techniques for fitting stochastic models to spatial point pattern data in the statistical package R. The techniques have been implemented in our package spatstat in R. They are demonstrated on two example datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.