We show for the first time that the majority of fibromyalgia patients have abnormal C nociceptors. Many silent nociceptors exhibit hyperexcitability resembling that in small-fiber neuropathy, but high activity-dependent slowing of conduction velocity is more common in fibromyalgia patients, and may constitute a distinguishing feature. We infer that abnormal peripheral C nociceptor ongoing activity and increased mechanical sensitivity could contribute to the pain and tenderness suffered by patients with fibromyalgia.
C-nociceptors do not normally fire action potentials unless challenged by adequate noxious stimuli. However, in pathological states nociceptors may become hyperexcitable and may generate spontaneous ectopic discharges. The aim of this study was to compare rat neuropathic pain models and to assess their suitability to model the spontaneous C-nociceptor activity found in neuropathic pain patients. Studies were performed in normal rats (n=40), healthy human subjects (n=15), peripheral neuropathic pain patients (n=20), and in five rat neuropathic pain models: nerve crush (n=24), suture (n=14), chronic constriction injury (n=12), STZ-induced diabetic neuropathy (n=56), and ddC-induced neuropathy (n=15). Microneurographic recordings were combined with electrical stimulation to monitor activity in multiple C fibers. Stimulation at 0.25 Hz allowed spontaneous impulses to be identified by fluctuations in baseline latency. Abnormal latency fluctuations could be produced by several mechanisms, and spontaneous activity was most reliably identified by the presence of unexplained latency increases corresponding to two or more additional action potentials. Spontaneous activity was present in a proportion of mechano-insensitive C-nociceptors in the patients and all rat models. The three focal traumatic nerve injury models provided the highest proportion (59.5%), whereas the two polyneuropathy models had fewer (18.6%), and the patients had an intermediate proportion (33.3%). Spontaneously active mechano-sensitive C-nociceptors were not recorded. Microneurographic recordings of spontaneous activity in diseased C-nociceptors may be useful for both short- and long-term drug studies, both in animals and in humans.
T-type calcium channels are a potential novel target for treatment of neuropathic pain such as painful diabetic neuropathy. ABT-639 is a peripherally acting highly selective T-type Ca(v)3.2 calcium channel blocker that has demonstrated analgesic efficacy in preclinical models and may have the potential to reduce spontaneous fiber activity. Microneurography is a unique technique that directly assesses the function of peripheral sensory afferents and measures abnormal spontaneous activity in single peripheral nociceptive C fibers. Abnormal spontaneous activity in C-nociceptors functions as a marker for spontaneous pain, as reduction of this activity could indicate analgesic efficacy. This randomized, double-blind controlled study evaluated the effects of a single 100-mg oral dose of ABT-639, compared with placebo, on abnormal spontaneous activity in peripheral C-nociceptors, measured for the first time by microneurography in adult patients with painful diabetic neuropathy. Lidocaine was included in this study and compared with placebo. Pharmacokinetics and safety of ABT-639 were evaluated. Thirty-nine patients were randomized, and a total of 56 analyzable C-nociceptors with spontaneous activity were identified in 34 patients. There were no significant differences in C-nociceptor activities after ABT-639 treatment vs placebo. Similar findings were observed for lidocaine vs placebo. There were no clinically significant findings in the safety of ABT-639. Further research of T-type Ca(v)3.2 calcium channels as potential treatment targets for painful diabetic neuropathy is warranted. The utilization of microneurography as a means to measure abnormal activity in C-nociceptors in human clinical studies opens new possibilities for future studies of compounds targeting peripheral nerve hyperexcitability. ClinicalTrials.gov identifier: NCT01589432.
Cold allodynia is a common sign of neuropathic pain patients but its underlying mechanisms are still largely unknown, partly because the populations of neurons responding to cold stimuli and their transduction mechanisms have not been fully determined. We report a patient with a small-fiber neuropathy of unknown origin, whose main complaint is cold allodynia. Microneurographic recordings showed ongoing spontaneous activity and abnormal responses to cold and menthol in identified subtypes of C-nociceptors. These findings provide the first direct evidence in human of abnormal peripheral nociceptor behavior potentially responsible for cold allodynia. The responsiveness of C-nociceptors to menthol suggests an abnormal expression or function of TRPM8 channels in this patient with a small-fiber polyneuropathy.
Neuropathic pain is an increasingly prevalent condition and has Background: a major impact on health and quality of life. However, the risk factors for the development and maintenance of neuropathic pain are poorly understood. Clinical, genetic and psychosocial factors all contribute to chronic pain, but their interactions have not been studied in large cohorts. The DOLORisk study aims to study these factors.Multicentre cross-sectional and longitudinal cohorts covering the Protocol: main causes leading to neuropathic pain (e.g. diabetes, surgery, main causes leading to neuropathic pain (e.g. diabetes, surgery, chemotherapy, traumatic injury), as well as rare conditions, follow a common protocol for phenotyping of the participants. This core protocol correlates answers given by the participants on a set of questionnaires with the results of their genetic analyses. A smaller number of participants undergo deeper phenotyping procedures, including neurological examination, nerve conduction studies, threshold tracking, quantitative sensory testing, conditioned pain modulation and electroencephalography.All studies have been approved by their regional Ethics and dissemination: ethics committees as required by national law. Results are disseminated through the , scientific meetings, open-access publications, DOLORisk website and in partnership with patient organisations. Strengths and limitations:Large cohorts covering many possible triggers for neuropathic pain Multi-disciplinary approach to study the interaction of clinical, psychosocial and genetic risk factors High comparability of the data across centres thanks to harmonised protocols One limitation is that the length of the questionnaires might reduce the response rate and quality of responses of participants
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.