We give a broad overview of approximation methods to derive analytical formulas for accurate and quick evaluation of option prices. We compare different approaches, from the theoretical point of view regarding the tools they require, and also from the numerical point of view regarding their performances. In the case of local volatility models with general time-dependency, we derive new formulas using the local volatility function at the mid-point between strike and spot: in general, our approximations outperform previous ones by Hagan and HenryLabordère. We also provide approximations of the option delta.
Abstract. We introduce an analytical approximation to efficiently price forward start options on equity in time-dependent local volatility models as the forward start date, the maturity or the volatility coefficient are small. We use a conditional expectation argument to represent the price as an expectation of a Black-Scholes formula computed with a stochastic implied volatility depending on the value of the equity at the forward date. Then we perform a volatility expansion to derive an analytical approximation of the forward implied volatility with a precise error estimate. We also illustrate the accuracy of the formula with some numerical experiments. Some results and tools of this work were presented at the conference SMAI 2013 in the mini-symposium "Méthodes asymptotiques en finance".Résumé. Nous introduisons une approximation analytique afin d'évaluer efficacement les optionsà départ différé dites forward start dans les modèlesà volatilité locale qui dépend du temps quand la date forward, la maturité ou le coefficient de volatilité sont petits. Nous utilisons un argument d'espérance conditionnelle pour représenter le prix comme l'espérance d'une formule de Black-Scholes calculée avec une volatilité implicite stochastique qui dépend de la valeur de l'actionà la date forward. Ensuite, nous effectuons un développement en volatilité pour obtenir une approximation analytique de la volatilité implicite forward avec une estimation précise de l'erreur. Nous illustronségalement la précision de notre formule avec quelques expériences numériques. Certains résultats et outils de ce travail ontété présentés au congrès SMAI 2013 dans le mini-symposium "Méthodes asymptotiques en finance".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.