Cancer stem cells (CSCs), known also as tumor-initiating cells, are quiescent, pluripotent, self-renewing neoplastic cells that were first identified in hematologic tumors and soon after in solid malignancies. CSCs have attracted remarkable research interest due to their role in tumor resistance to chemotherapy and radiation treatment as well as recurrence. Extensive research has been devoted to the role of CSCs in glioblastoma multiforme (GBM), the most common primary brain tumor in adults, which is characterized by a dismal prognosis because of its aggressive course and poor response to treatment. The aim of the current paper is to provide an overview of current knowledge on the role of cancer stem cells in the pathogenesis and treatment resistance of glioblastoma. The six regulatory mechanisms of glioma stem cells (GSCs)—tumor microenvironment, niche concept, metabolism, immunity, genetics, and epigenetics—are reviewed. The molecular markers used to identify GSCs are described. The role of GSCs in the treatment resistance of glioblastoma is reviewed, along with future treatment options targeting GSCs. Stem cells of glioblastoma thus represent both a driving mechanism of major treatment difficulties and a possible target for more effective future approaches.
Endometriosis is a complex disease, which is defined by abnormal growth of endometrial tissue outside the uterus. It affects about 10% of women of reproductive age all over the world. Endometriosis causes symptoms that notably worsen patient’s well-being—such as severe pelvic pain, dysfunction of the organs of pelvic cavity, infertility and secondary mental issues. The diagnosis of endometriosis is quite often delayed because of nonspecific manifestations. Since the disease was defined, several different pathogenetic pathways have been considered, including retrograde menstruation, benign metastasis, immune dysregulation, coelomic metaplasia, hormonal disbalance, involvement of stem cells and alterations in epigenetic regulation, but the true pathogenesis of endometriosis remains poorly understood. The knowledge of the exact mechanism of the origin and progression of this disease is significant for the appropriate treatment. Therefore, this review reports the main pathogenetic theories of endometriosis based on current studies.
The first discovery of cancer stem cells (CSCs) in leukaemia triggered active research on stemness in neoplastic tissues. CSCs represent a subpopulation of malignant cells, defined by unique properties: a dedifferentiated state, self-renewal, pluripotency, an inherent resistance to chemo- and radiotherapy, the presence of certain epigenetic alterations, as well as a higher tumorigenicity in comparison with the general population of cancer cells. A combination of these features highlights CSCs as a high-priority target during cancer treatment. The presence of CSCs has been confirmed in multiple malignancies, including pancreatic ductal adenocarcinoma, an entity that is well known for its dismal prognosis. As the aggressive course of pancreatic carcinoma is partly attributable to treatment resistance, CSCs could contribute to adverse outcomes. The aim of this review is to summarize the current information regarding the markers and molecular features of CSCs in pancreatic ductal adenocarcinoma and the therapeutic options to remove them.
Immunohistochemistry remains an indispensable tool in diagnostic surgical pathology. In parathyroid tumours, it has four main applications: to detect (1) loss of parafibromin; (2) other manifestations of an aberrant immunophenotype hinting towards carcinoma; (3) histogenesis of a neck mass and (4) pathogenetic events, including features of tumour microenvironment and immune landscape. Parafibromin stain is mandatory to identify the new entity of parafibromin-deficient parathyroid neoplasm, defined in the WHO classification (2022). Loss of parafibromin indicates a greater probability of malignant course and should trigger the search for inherited or somatic CDC73 mutations. Aberrant immunophenotype is characterised by a set of markers that are lost (parafibromin), down-regulated (e.g., APC protein, p27 protein, calcium-sensing receptor) or up-regulated (e.g., proliferation activity by Ki-67 exceeding 5%) in parathyroid carcinoma compared to benign parathyroid disease. Aberrant immunophenotype is not the final proof of malignancy but should prompt the search for the definitive criteria for carcinoma. Histogenetic studies can be necessary for differential diagnosis between thyroid vs. parathyroid origin of cervical or intrathyroidal mass; detection of parathyroid hormone (PTH), chromogranin A, TTF-1, calcitonin or CD56 can be helpful. Finally, immunohistochemistry is useful in pathogenetic studies due to its ability to highlight both the presence and the tissue location of certain proteins. The main markers and challenges (technological variations, heterogeneity) are discussed here in the light of the current WHO classification (2022) of parathyroid tumours.
Aziridination reactions represent a powerful tool in aziridine synthesis. Significant progress has been achieved in this field in the last decades, whereas highly functionalized aziridines including 3-arylated aziridine-2-carbonyl compounds play an important role in both medical and synthetic chemistry. For the reasons listed, in the current review we have focused on the ways to obtain 3-arylated aziridines and on the recent advances (mainly since the year 2000) in the methodology of the synthesis of these compounds via aziridination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.