Gliomas have one of the worst prognosis among cancers. Their resistance to cell death induced by endogenous neurotoxic agents, such as extracellular ATP, seems to play an important role in their pathobiology since alterations in the degradation rate of extracellular ATP drastically affects glioma growth in rats. In the present work we characterized the mechanisms of cell death induced by extracellular ATP in a murine glioma cell line, GL261. ATP and BzATP, a P2X7 agonist, induced cell death at concentrations that are described to activate the P2X7 receptor in mouse. oATP, an antagonist of P2X7, blocked the ATP-induced cell death. Agonists of purinergic receptors expressed in GL261 such as adenosine, ADP, UTP did not cause any cell death, even at mM concentrations. A sub-population of cells more sensitive to ATP expressed more P2X7 when compared to a less sensitive subpopulation. Accordingly, RNA interference of the P2X7 receptor drastically reduced ATP-induced cell death, suggesting that this receptor is necessary for this effect. The mechanism of ATP-induced cell death is predominantly necrotic, since cells presented shrinkage accompanied by membrane permeabilization, but not apoptotic, since no phosphatidylserine externalization or caspase activity was observed. These data show the importance of P2X7 in ATP-induced cell death and shed light on the importance of ATP-induced cell death in glioma development.
Glioblastoma is the most aggressive tumor in the CNS and is characterized by having a cancer stem cell (CSC) subpopulation essential for tumor survival. The purinergic system plays an important role in glioma growth, since adenosine triphosphate (ATP) can induce proliferation of glioma cells, and alteration in extracellular ATP degradation by the use of exogenous nucleotidases dramatically alters the size of gliomas in rats. The aim of this work was to characterize the effect of the purinergic system on glioma CSCs. Human U87 glioma cultures presented tumor spheres that express the markers of glioma cancer stem cells CD133, Oct-4, and Nanog. Messenger RNA of several purinergic receptors were differently expressed in spheres when compared to a cell monolayer not containing spheres. Treatment of human gliomas U87 or U343 as well as rat C6 gliomas with 100 μM of ATP reduced the number of tumor spheres when grown in neural stem cell medium supplemented with epidermal growth factor and basic fibroblast growth factor. Moreover, ATP caused a decline in the number of spheres observed in culture in a dose-dependent manner. ATP also reduces the expression of Nanog, as determined by flow cytometry, as well as CD133 and Oct-4, as analyzed by flow cytometry and RT-PCR in U87 cells. The differential expression of purinergic receptor in tumor spheres when compared to adherent cells and the effect of ATP in reducing tumor spheres suggest that the purinergic system affects CSC biology and that ATP may be a potential agonist for differentiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.