We investigate the KdV-Burgers and Gardner equations with dissipation and external perturbation terms by the approach of dynamical systems and Shil'nikov's analysis. The stability of the equilibrium point is considered, and Hopf bifurcations are investigated after a certain scaling that reduces the parameter space of a three-mode dynamical system which now depends only on two parameters. The Hopf curve divides the two-dimensional space into two regions. On the left region the equilibrium point is stable leading to dissapative periodic orbits. While changing the bifurcation parameter given by the velocity of the traveling waves, the equilibrium point becomes unstable and a unique stable limit cycle bifurcates from the origin. This limit cycle is the result of a supercritical Hopf bifurcation which is proved using the Lyapunov coefficient together with the Routh-Hurwitz criterion. On the right side of the Hopf curve, in the case of the KdV-Burgers, we find homoclinic chaos by using Shil'nikov's theorem which requires the construction of a homoclinic orbit, while for the Gardner equation the supercritical Hopf bifurcation leads only to a stable periodic orbit.
We provide conditions for existence of hyperbolic, unbounded periodic and elliptic solutions in terms of Weierstrass ℘ functions of both third and fifth-order KdV-BBM (Korteweg-de VriesBenjamin, Bona & Mahony) regularized long wave equation. An analysis for the initial value problem is developed together with a local and global well-posedness theory for the third-order KdV-BBM equation. Traveling wave reduction is used together with zero boundary conditions to yield solitons and periodic unbounded solutions, while for nonzero boundary conditions we find solutions in terms of Weierstrass elliptic ℘ functions. For the fifth-order KdV-BBM equation we show that a parameter γ = 1 12, for which the equation has a Hamiltonian, represents a restriction for which there are constraint curves that never intersect a region of unbounded solitary waves, which in turn shows that only dark or bright solitons and no unbounded solutions exist. Motivated by the lack of a Hamiltonian structure for γ = 1 12we develop H k bounds, and we show for the non Hamiltonian system that dark and bright solitons coexist together with unbounded periodic solutions. For nonzero boundary conditions, due to the complexity of the nonlinear algebraic system of coefficients of the elliptic equation we construct Weierstrass solutions for a particular set of parameters only.
We establish the nonlinear stability of solitary waves (solitons) and periodic traveling wave solutions (cnoidal waves) for a Korteweg-de Vries (KdV) equation which includes a fifth order dispersive term. The traveling wave solutions which yield solitons for zero boundary conditions and wave-trains of cnoidal waves for nonzero boundary conditions are analyzed using stability theorems, which rely on the positivity properties of the Fourier transforms. We show that all families of solutions considered here are (orbitally) stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.