Due to the complex coupling between phenology and climatic factors, the influence mechanism of climate, especially preseason temperature and preseason precipitation, on vegetation phenology is still unclear. In the present study, we explored the long-term trends of phenological parameters of different vegetation types in China north of 30°N from 1982 to 2014 and their comprehensive responses to preseason temperature and precipitation. Simultaneously, annual double-season phenological stages were considered. Results show that the satellite-based phenological data were corresponding with the ground-based phenological data. Our analyses confirmed that the preseason temperature has a strong controlling effect on vegetation phenology. The start date of the growing season (SOS) had a significant advanced trend for 13.5% of the study area, and the end date of the growing season (EOS) showed a significant delayed trend for 23.1% of the study area. The impact of preseason precipitation on EOS was overall stronger than that on SOS, and different vegetation types had different responses. Compared with other vegetation types, SOS and EOS of crops were greatly affected by human activities while the preseason precipitation had less impact. This study will help us to make a scientific decision to tackle global climate change and regulate ecological engineering.
To evaluate the retinal vascular flow density changes of myopic eyes of young adults using optical coherence tomography angiography and the factors affecting these changes. In this cross-sectional study, 90 eyes of 45 participants were analyzed and divided into three groups: mild, moderate, and high myopia (without pathological changes). Macular and radial peripapillary capillary flow densities were measured using optical coherence tomography angiography. Their relationships with the axial length, the spherical equivalent of the refractive error, and age were analyzed using analysis of variance, Pearson’s correlation coefficient, and multivariate linear regression analysis. Superficial and deep macular vascular densities were significantly decreased in the high myopia group compared to the other groups. In the high myopia group, the nasal peripapillary flow density decreased, whereas the flow density inside the disc increased. The axial length negatively correlated with the superficial and deep macular vascular density, but positively correlated with the vascular density inside the disc. The spherical equivalent of the refractive error negatively correlated with the macular vascular density. The retinal vascular density decreased in the high myopia group. Hence, the microvascular network inside the disc may have a compensatory action in the hypoxic setting of high myopia.
Climate change has exacerbated the frequency and severity of droughts worldwide. Evaluating the response of gross primary productivity (GPP) to drought is thus beneficial to improving our understanding of the impact of drought on the carbon cycle balance. Although many studies have investigated the relationship between vegetation productivity and dry/wet conditions, the capability of different drought indices of assessing the influence of water deficit is not well understood. Moreover, few studies consider the effects of drought on vegetation with a focus on periods of drought. Here, we investigated the spatial-temporal patterns of GPP, the standardized precipitation evapotranspiration index (SPEI), and the vapor pressure deficit (VPD) in China from 2001 to 2020 and examined the relationship between GPP and water deficit/drought for different vegetation types. The results revealed that SPEI and GPP were positively correlated over approximately 70.7% of the total area, and VPD was negatively correlated with GPP over about 66.2% of the domain. Furthermore, vegetation productivity was more negatively affected by water deficit in summer and autumn. During periods of drought, the greatest negative impact was on deciduous forests and croplands, and woody savannas were the least impacted. This research provides a scientific reference for developing mitigation and adaptation measures to lessen the impact of drought disasters under a changing climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.