The recent exploration of deep learning for supervised speech separation has significantly accelerated the progress on the multi-talker speech separation problem. The multi-channel approaches have attracted much research attention due to the benefit of spatial information. In this paper, integrated with the power spectra and inter-channel spatial features at the input level, we explore to leverage directional features, which imply the speaker source from the desired target direction, for target speaker separation. In addition, we incorporate an attention mechanism to dynamically tune the model's attention to the reliable input features to alleviate spatial ambiguity problem when multiple speakers are closely located. We demonstrate, on the far-field WSJ0 2-mix dataset, that our proposed approach significantly improves the performance of speech separation against the baseline single-channel and multi-channel speech separation methods.
Speech separation has been studied widely for single-channel close-talk microphone recordings over the past few years; developed solutions are mostly in frequency-domain. Recently, a raw audio waveform separation network (TasNet) is introduced for single-channel data, with achieving high Si-SNR (scale-invariant source-to-noise ratio) and SDR (sourceto-distortion ratio) comparing against the state-of-the-art solution in frequency-domain. In this study, we incorporate effective components of the TasNet into a frequency-domain separation method. We compare both for alternative scenarios. We introduce a solution for directly optimizing the separation criterion in frequency-domain networks. In addition to speech separation objective and subjective measurements, we evaluate the separation performance on a speech recognition task as well. We study the speech separation problem for far-field data (more similar to naturalistic audio streams) and develop multi-channel solutions for both frequency and time-domain separators with utilizing spectral, spatial and speaker location information. For our experiments, we simulated multi-channel spatialized reverberate WSJ0-2mix dataset. Our experimental results show that spectrogram separation can achieve competitive performance with better network design. Multi-channel framework as well is shown to improve the single-channel performance relatively up to +35.5% and +46% in terms of WER and SDR, respectively.
Hand-crafted spatial features (e.g., inter-channel phase difference, IPD) play a fundamental role in recent deep learning based multi-channel speech separation (MCSS) methods. However, these manually designed spatial features are hard to incorporate into the end-to-end optimized MCSS framework. In this work, we propose an integrated architecture for learning spatial features directly from the multi-channel speech waveforms within an end-to-end speech separation framework. In this architecture, time-domain filters spanning signal channels are trained to perform adaptive spatial filtering. These filters are implemented by a 2d convolution (conv2d) layer and their parameters are optimized using a speech separation objective function in a purely data-driven fashion. Furthermore, inspired by the IPD formulation, we design a conv2d kernel to compute the inter-channel convolution differences (ICDs), which are expected to provide the spatial cues that help to distinguish the directional sources. Evaluation results on simulated multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed ICD based MCSS model improves the overall signal-to-distortion ratio by 10.4% over the IPD based MCSS model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.