Aggressive chemotherapy may lead to permanent male infertility. Prepubertal males do not generate sperm, but their testes do contain spermatogonial cells (SPGCs) that could be used for fertility preservation. In the present study, we examined the effect of busulfan (BU) on the SPGCs of immature mice, and the possible induction of the survivor SPGCs to develop spermatogenesis in 3D in-vitro culture. Immature mice were injected with BU, and after 0.5–12 weeks, their testes were weighed and evaluated histologically compared to the control mice. The spermatogonial cells [Sal-like protein 4 (SALL4) and VASA (a member of the DEAD box protein family) in the testicular tissue were counted/seminiferous tubule (ST). The cells from the STs were enzymatically isolated and cultured in vitro. Our results showed a significant decrease in the testicular weight of the BU-treated mice compared to the control. This was in parallel to a significant increase in the number of severely damaged STs, and a decrease in the number of SALL4 and VASA/STs compared to the control. The cultures of the isolated cells from the STs of the BU-treated mice showed a development of colonies and meiotic and post-meiotic cells after four weeks of culture. The addition of homogenates from adult GFP mice to those cultures induced the development of sperm-like cells after four weeks of culture. This is the first study demonstrating the presence of biologically active spermatogonial cells in the testicular tissue of BU-treated immature mice, and their capacity to develop sperm-like cells in vitro.
Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community—either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.
Aggressive chemotherapy treatment may lead to male infertility. Prepubertal boys do not produce sperm at this age, however, they have spermatogonial stem cells in their testes. Here, we examined the effect of intraperitoneal injection of cyclophosphamide (CP) on the capacity of immature mice (IM) to develop spermatogenesis in vivo and in vitro [using methylcellulose culture system (MCS)]. Our results show a significant decrease in testicular weight, total number of testicular cells, and the number of Sertoli, peritubular, premeiotic, and meiotic/post-meiotic cells, but an increase in the percentages of damaged seminiferous tubules in CP-treated IM compared to control. The functionality of Sertoli cells was significantly affected. The addition of testosterone to isolated cells from seminiferous tubules of CP-treated IM significantly increased the percentages of premeiotic (CD9-positive cells) and meiotic/post-meiotic cells (ACROSIN-positive cells) developed in MCS compared to control. The addition of FSH did not affect developed cells in MCS compared to control, but in combination with testosterone, it significantly decreased the percentages of CD9-positive cells and ACROSIN-positive cells. The addition of IL-1 did not affect developed cells in MCS compared to control, but in combination with testosterone, it significantly increased the percentages of VASA-positive cells and BOULE-positive cells compared to IL-1 or testosterone. Addition of TNF significantly increased only CD9-positive cells in MCS compared to control, but in combination with testosterone, it significantly decreased ACROSIN-positive cells compared to testosterone. Our results show a significant impairment of spermatogenesis in the testes of CP-treated IM, and that spermatogonial cells from these mice proliferate and differentiate to meiotic/post-meiotic cells under in vitro culture conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.