In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS): the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG), a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising therapeutic strategy by interfering with the neuroinflammatory component of the disease.
To investigate the psychiatric symptoms accompanying the early phases of Parkinson's disease (PD), we injected adult rats with 10.5 microg 6-hydroxydopamine (6-OHDA) bilaterally into the dorsal striatum. The resulting neurodegeneration led, 12 weeks after injection, to a mild (36%) reduction of striatal dopamine. We tested the behavioral response of sham and 6-OHDA-lesioned animals at different time points after injection to evaluate the onset and progression of behavioral abnormalities. The results showed that such a mild reduction of dopamine levels was associated with a decrease in anxiety-like behavior, an increase in "depression"-like behavior, and a marked change in social behavior. Learning and memory abilities were not affected. Overall, the PD rat model used here displays behavioral alterations having face validity with psychiatric symptoms of the pathology and thus appears to be a valuable tool for investigating the neural bases of the early phases of PD.
Brain‐derived neurotrophic factor (BDNF), a member of neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Both BDNF and its tyrosine kinase receptors (TrkB) are highly expressed in the hippocampus, where an interaction with adenosine A2A receptors (A2ARs) has been recently reported. In the present paper, we evaluated the role of A2ARs in mediating functional effects of BDNF in hippocampus using A2AR knock‐out (KO) mice. In hippocampal slices from WT mice, application of BDNF (10 ng/mL) increased the slope of excitatory post‐synaptic field potentials (fEPSPs), an index of synaptic facilitation. This increase of fEPSP slope was abolished by the selective A2A antagonist ZM 241385. Similarly, genetic deletion of the A2ARs abolished BDNF‐induced increase of the fEPSP slope in slices from A2AR KO mice The reduced functional ability of BDNF in A2AR KO mice was correlated with the reduction in hippocampal BDNF levels. In agreement, the pharmacological blockade of A2Rs by systemic ZM 241385 significantly reduced BDNF levels in the hippocampus of normal mice. These results indicate that the tonic activation of A2ARs is required for BDNF‐induced potentiation of synaptic transmission and for sustaining a normal BDNF tone in the hippocampus.
Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two ,u opioid receptor subtypes that modulate antinociception and catalepsy in the rat ([Lys7]
ABSTRACTThree naturally occurring dermorphin-like peptides from the skin of the frog PhyUomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for IA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.