The medial parieto-occipital cortex is a central node in the dorsomedial visual stream. Recent physiological studies in the macaque monkey have demonstrated that the medial parieto-occipital cortex contains two areas, the visual area V6 and the visuomotor area V6A. Area V6 is a retinotopically organized visual area that receives form and motion information directly from V1 and is heavily connected with the other areas of the dorsal visual stream, including V6A. Area V6A is a bimodal visual/somatosensory area that elaborates visual information such as form, motion and space suitable for the control of both reaching and grasping movements. Somatosensory and skeletomotor activities in V6A affect the upper limbs and involve both the transport phase of reaching and grasping movements. Finally, V6A is strongly and reciprocally connected with the dorsal premotor cortex controlling arm movements. The picture emerging from these data is that the medial parieto-occipital cortex is well equipped to control both proximal and distal movements in the online visuomotor guidance of prehension. In agreement with this view, selective V6A lesions in monkey produce misreaching and misgrasping with the arm contralateral to the lesion in visually guided movements. These deficits are similar to those observed in optic ataxia patients and suggest that human and monkey superior parietal lobules are homologous structures, and that optic ataxia syndrome is the result of the lesion of a 'human' area V6A.
Brain control of prehension is thought to rely on two specific brain circuits: a dorsomedial one (involving the areas of the superior parietal lobule and the dorsal premotor cortex) involved in the transport of the hand toward the object and a dorsolateral one (involving the inferior parietal lobule and the ventral premotor cortex) dealing with the preshaping of the hand according to the features of the object. The present study aimed at testing whether a pivotal component of the dorsomedial pathway (area V6A) is involved also in hand preshaping and grip formation to grasp objects of different shapes.Two macaque monkeys were trained to reach and grasp different objects. For each object, animals used a different grip: whole-hand prehension, finger prehension, hook grip, primitive precision grip, and advanced precision grip. Almost half of 235 neurons recorded from V6A displayed selectivity for a grip or a group of grips. Several experimental controls were used to ensure that neural modulation was attributable to grip only.Thesefindings,inconcertwithpreviousstudiesdemonstratingthatV6Aneuronsaremodulatedbyreachdirectionandwristorientation,that lesion of V6A evokes reaching and grasping deficits, and that dorsal premotor cortex contains both reaching and grasping neurons, indicate that the dorsomedial parieto-frontal circuit may play a central role in all phases of reach-to-grasp action. Our data suggest new directions for the modeling of prehension movements and testable predictions for new brain imaging and neuropsychological experiments.
The visuomotor medial posterior parietal area V6A has been recently subdivided into two cytoarchitectonic sectors called V6Ad and V6Av (Luppino et al., 2005). The aim of the present study was to recognize whether these two cortical sectors show different functional profiles. Fourteen hemispheres from eight animals (Macaca fascicularis) were included in this study, for a total of 3828 extracellularly recorded neurons assigned to areas V6Ad or V6Av on cytoarchitectural basis. The sensitivity of recorded neurons to sensory-and motor-related activities was checked with a series of functional tests performed on behaving animals. We found that cells sensitive to visual stimuli were more represented in V6Av and cells sensitive to somatosensory stimuli were more represented in V6Ad. Visual cells directly encoding spatial locations (real-position cells) were present only in V6Av. Cells encoding basic visual and somatic properties as well as different aspects of reaching and grasping activities were present in both sectors of V6A, although with different incidence. Cells that had reach-related activity enhanced by visual feedback and grasping neurons activated by whole-hand prehension were more concentrated in V6Av. Conversely, reaching neurons inhibited by visual feedback and grasping neurons activated by precision grip were more represented in V6Ad. Although V6Av and V6Ad show partly different functional profiles, our data support the idea that V6A is a single functional area involved in the control of reach-to-grasp movements, with the dorsal sector (V6Ad) more involved in the somatomotor control and the ventral sector (V6Av) in the visual control of reaching and grasping actions.
In the last 2 decades, the medial posterior parietal area V6A has been extensively studied in awake macaque monkeys for visual and somatosensory properties and for its involvement in encoding of spatial parameters for reaching, including arm movement direction and amplitude. This area also contains populations of neurons sensitive to grasping movements, such as wrist orientation and grip formation. Recent work has shown that V6A neurons also encode the shape of graspable objects and their affordance. In other words, V6A seems to encode object visual properties specifically for the purpose of action, in a dynamic sequence of visuomotor transformations that evolve in the course of reach-to-grasp action.We propose a model of cortical circuitry controlling reach-to-grasp actions, in which V6A acts as a comparator that monitors differences between current and desired hand positions and configurations. This error signal could be used to continuously update the motor output, and to correct reach direction, hand orientation, and/or grip aperture as required during the act of prehension.In contrast to the generally accepted view that the dorsomedial component of the dorsal visual stream encodes reaching, but not grasping, the functional properties of V6A neurons strongly suggest the view that this area is involved in encoding all phases of prehension, including grasping.
Reach-to-grasp actions involve several components of forelimb movements needed to direct the hand toward the object to be grasped, and to orient and preshape the hand according to the object axis and shape. Area V6A, which represents a node of the dorsomedial frontoparietal circuits, has so far been implicated only in directing the arm toward different spatial locations. The present results confirm this finding and demonstrate, for the first time, that during reach-to-grasp, V6A neurons are also modulated by the orientation of the hand. In the present work the object to be grasped was a handle that could have different orientations. Reach-to-grasp movements were executed in complete darkness while gazing at a small fixation point. The majority of the tested cells (76/142; 54%) turned out to be sensitive to the orientation of the handle. Neurons could be modulated during preparation or execution of reach-to-grasp movements. The most represented cells were those modulated by hand orientation both during preparatory and movement periods. These data show that reaching and grasping are processed by the same population of neurons, providing evidence that the coordination of reaching and grasping takes place much earlier than previously thought, i.e., in the parieto-occipital cortex. The data here reported are in agreement with results of lesions to the medial posterior parietal cortex in both monkeys and humans, and with recent imaging data in humans, all of them indicating a functional coupling in the control of reaching and grasping by the medial parietofrontal circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.