Bacterial colonisation and biofilm formation on the surface of urinary catheters is a common cause of nosocomial infection, and as such is a major impediment to their long-term use. Understanding the mechanisms of biofilm formation on urinary catheters is critical to their control and will aid the future development of materials used in their manufacture. In this report we have used proteomic analysis coupled with immunoassays to show that the major outer membrane protein (OmpA) of Escherichia coli is overexpressed during biofilm formation. A series of synthetic hydrogels being developed for potential use as catheter coatings were used as the substrata and OmpA expression was increased in biofilms on all these surfaces, as well as being a feature of both a laboratory and a clinical strain of E. coli. Up-regulation of OmpA may, therefore, be a common feature of E. coli biofilms. These findings present OmpA as a potential target for biofilm inhibition and may contribute to the rational design of biofilm inhibiting hydrogel coatings for urinary catheters.
During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol’s ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies.
Factors controlling proliferation and differentiation are crucial in advancement of neural cell-based experimental neurodegenerative therapies. In this regard, nicotinamide has been shown to determine the fate of neural cells, enhance neuralization, and influence DNA repair and apoptosis. This study investigated whether the biologically active vitamin B3 metabolite, nicotinamide, could direct the differentiation of mouse embryonic stem cells, cultured as monolayers, into neurons at either early or late stages of development. Interestingly, we observed a dose-responsive increase in the percentage of neurons when nicotinamide was added at early stages to the cells undergoing differentiation (days 0-7). Nicotinamide (10 mM) had a significant effect on neuronal differentiation, increasing the βIII-tubulin-positive neuronal population and concomitantly decreasing the total number of cells in culture, measured by quantification of 4',6-diamidino-2-phenylindole (DAPI)-positive cells. Nicotinamide added between days 7 and 14 had no effect on neuronal induction. High levels of nicotinamide (20 mM) induced cytotoxicity and cell death. Current work is focusing on elucidating the mechanism(s) mediating neural specification by nicotinamide--that is, induction of cell-cycle exit and/or selective apoptosis in non-neural populations. Preliminary data suggest a reduction in the proportion of proliferating cells in nicotinamide-treated cultures--that is, nicotinamide enhances cell-cycle exit, thereby promoting neuronal differentiation. Future work will focus on evaluating the effect of nicotinamide on the differentiation of midbrain dopamine neurons, towards a therapy for Parkinson's disease.
IntroductionVitamin B3 has been shown to play an important role during embryogenesis. Specifically, there is growing evidence that nicotinamide, the biologically active form of vitamin B3, plays a critical role as a morphogen in the differentiation of stem cells to mature cell phenotypes, including those of the central nervous system (CNS). Detailed knowledge of the action of small molecules during neuronal differentiation is not only critical for uncovering mechanisms underlying lineage-specification, but also to establish more effective differentiation protocols to obtain clinically relevant cells for regenerative therapies for neurodegenerative conditions such as Huntington’s disease (HD). Thus, this study aimed to investigate the potential of nicotinamide to promote the conversion of stem cells to mature CNS neurons.MethodsNicotinamide was applied to differentiating mouse embryonic stem cells (mESC; Sox1GFP knock-in 46C cell line) during their conversion towards a neural fate. Cells were assessed for changes in their proliferation, differentiation and maturation; using immunocytochemistry and morphometric analysis methods.ResultsResults presented indicate that 10 mM nicotinamide, when added at the initial stages of differentiation, promoted accelerated progression of ESCs to a neural lineage in adherent monolayer cultures. By 14 days in vitro (DIV), early exposure to nicotinamide was shown to increase the numbers of differentiated βIII-tubulin-positive neurons. Nicotinamide decreased the proportion of pluripotent stem cells, concomitantly increasing numbers of neural progenitors at 4 DIV. These progenitors then underwent rapid conversion to neurons, observed by a reduction in Sox 1 expression and decreased numbers of neural progenitors in the cultures at 14 DIV. Furthermore, GABAergic neurons generated in the presence of nicotinamide showed increased maturity and complexity of neurites at 14 DIV. Therefore, addition of nicotinamide alone caused an accelerated passage of pluripotent cells through lineage specification and further to non-dividing mature neurons.ConclusionsOur results show that, within an optimal dose range, nicotinamide is able to singly and selectively direct the conversion of embryonic stem cells to mature neurons, and therefore may be a critical factor for normal brain development, thus supporting previous evidence of the fundamental role of vitamins and their metabolites during early CNS development. In addition, nicotinamide may offer a simple effective supplement to enhance the conversion of stem cells to clinically relevant neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.