The atypical hemolytic uremic syndrome (aHUS) is a paradigm of a disease, caused by overactivation of the alternative complement pathway secondary to a not well-understood trigger event. About 60 % of the patients present genetic or acquired abnormalities in the proteins of the alternative complement pathway. In 40 % of the cases the affected protein is the complement regulator Factor H (FH)-30 % due to mutations and 10 % because of anti-FH autoantibodies. Here we describe the detailed protocol for a rapid test to analyse the functional defect associated with genetic or acquired FH-related abnormalities. It can be applied for the characterization of the underlying complement defect in aHUS, based on spontaneous lysis of non-sensitized sheep erythrocytes in contact with patients' plasma or serum.
Vibrio
bacteria, and particularly members of the Harveyi clade, are the causative agents of vibriosis. This disease is responsible for mass mortality events and important economic losses on aquaculture farms. Improvements in surveillance and diagnosis are needed to successfully manage vibriosis outbreaks. 16S rRNA gene sequencing is generally considered to be the gold standard for bacterial identification but the cost and long processing time make it difficult to apply for routine identification. In contrast, MALDI-TOF MS offers rapid diagnosis and is commonly used in veterinary laboratories today. The major limiting factor for using this technique is the low environmental bacterial diversity in the commonly available databases. Here, we demonstrate that the sole use of the commercially available Bruker BioTyper database is not fully adequate for identifying
Vibrio
bacteria isolated from aquaculture farms. We therefore developed a new in-house database named Luvibase, composed of 23 reference MALDI-TOF mass spectra profiles obtained from
Vibrio
collection strains, mostly belonging to the Harveyi clade. The comparison of the accuracy of MALDI-TOF MS profiling and 16S rRNA gene sequencing revealed a lack of resolution for 16S rRNA gene sequencing. In contrast, MALDI-TOF MS profiling proved to be a more reliable tool for resolving species-level variations within the Harveyi clade. Finally, combining the Luvibase with the Bruker ver.9.0.0.0 database, led to successful identification of 47
Vibrio
isolates obtained from moribund abalone, seabass and oysters. Thus, the use of Luvibase allow for increased confidence in identifying
Vibrio
species belonging to the Harveyi clade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.