Understanding the effect of surfactant properties is critical when designing vesicular delivery systems. This review evaluates previous studies to explain the influence of surfactant properties on the behavior of lipid vesicular systems, specifically their size, charge, stability, entrapment efficiency, pharmacokinetics, and pharmacodynamics. Generally, the size of vesicles decreases by increasing the surfactant concentration, carbon chain length, the hydrophilicity of the surfactant head group, and the hydrophilic-lipophilic balance. Increasing surfactant concentration can also lead to an increase in charge, which in turn reduces vesicle aggregation and enhances the stability of the system. The vesicles' entrapment efficiency not only depends on the surfactant properties but also on the encapsulated drug. For example, the encapsulation of a lipophilic drug could be enhanced by using a surfactant with a low hydrophilic-lipophilic balance value. Moreover, the membrane permeability of vesicles depends on the surfactant's carbon chain length and transition temperature. In addition, surfactants have a clear influence on pharmacokinetics and pharmacodynamics such as sustaining drug release, enhancing the circulation time of vesicles, improving targeting and cellular uptake.
Objective To investigate the effect of formulation parameters on the preparation of transfersomes as sustained‐release delivery systems for lidocaine and to develop and validate a new high‐performance liquid chromatography (HPLC) method for analysis. Method Taguchi design of experiment (DOE) was used to optimise lidocaine‐loaded transfersomes in terms of phospholipid, edge activator (EA) and phospholipid : EA ratio. Transfersomes were characterised for size, polydispersity index (PDI), charge and entrapment efficiency (%EE). A HPLC method for lidocaine quantification was optimised and validated using a mobile phase of 30%v/v PBS (0.01 m) : 70%v/v Acetonitrile at a flow rate of 1 ml/min, detected at 255 nm with retention time of 2.84 min. The release of lidocaine from selected samples was assessed in vitro. Key findings Transfersomes were 200 nm in size, with PDI ~ 0.3. HPLC method was valid for linearity (0.1–2 mg/ml, R2 0.9999), accuracy, intermediate precision and repeatability according to ICH guidelines. The %EE was between 44% and 56% and dependent on the formulation parameters. Taguchi DOE showed the effect of factors was in the rank order : lipid : EA ratio ˃ EA type ˃ lipid type. Optimised transfersomes sustained the release of lidocaine over 24 h. Conclusion Sustained‐release, lidocaine‐loaded transfersomes were successfully formulated and optimised using a DOE approach, and a new HPLC method for lidocaine analysis was developed and validated.
A simplistic approach was conducted to manufacture novel paclitaxel (PTX) loaded protransfersome tablet formulations for pulmonary drug delivery. Large surface area presented by pulmonary system offer better target using anti-cancer drug deposition for localized effect in the lungs. Protransfersomes are dry powder formulations, whereas transfersomes are liquid dispersions containing vesicles generated from protransfersomes upon hydration. Protransfersome powder formulations (F1-F27) (referred as Micro formulations based on transfersomes vesicles size post hydration) were prepared by employing phospholipid (Soya phosphatidylcholine (SPC)), three different carbohydrate carriers (Lactose monohydrate, LMH; Microcrystalline cellulose, MCC; and Starch), three surfactants (i.e. Span 80, Span 20 and Tween 80) in three different lipid phase to carrier ratios (i.e. 1:05, 1:15 and 1:25 w/w), with the incorporation of PTX as a model drug. Hydrophobic chain of SPC may enhance PTX solubility as well as its accommodation to improve entrapment and delivery via transfersome vesicles to the target site. Out of the 27 Micro protransfersome formulations, PTX-loaded LMH powder formulations F3, F6 and F9 (i.e. 1:25 w/w lipid phase to carrier ratio) exhibited an excellent powder flowability via angle of repose (AOR) and good compressibility index due to the smaller and uniform particle size and shape of LMH. Following hydration, these formulations also showed smaller volume median diameter (VMD) in micrometres (5.65 ± 0.85-6.76 ± 0.61 µm) and PTX entrapment of 93-96%. Hydrated transfersome formulations (F3, F6 and F9) were converted into Nano size via probe sonication and referred as Nano formulations. These Nano formulations were converted into dry powder via spray drying (SD) (F3NSD, F6NSD and F9NSD) or freeze drying (FD) (F3NFD, F6NFD and F9NFD). Post manufacture of protransfersome tablets (i.e. 9 formulations), quality control tests were conducted in accordance to British Pharmacopeia (BP). Only Micro formulations protransfersome tablets (i.e. F3, F6 and F9) passed the uniformity of weight test, exhibited high crushing strength and tablet thickness when compared to SD or FD protransfersome tablets. Micro protransfersome formulations (i.e. F3, F6 and F9) into tablets demonstrated shorter nebulization time and high output rate using Ultrasonic nebulizer as compared to Vibrating mesh nebulizer (i.e. Omron NE U22). Based on formulations, characterizations and nebulizer performance; Micro protransfersome tablet formulations F3, F6 and F9 (i.e. 1:25 w/w) and Ultrasonic nebulizer was found to be a superior combination with enhanced output efficiency. Moreover, PTX-loaded F3, F6 and F9 tablet formulations (10%) were identified as toxic (60, 68 and 67% cell viability) to cancer MRC-5 SV2 (i.e. immortalized human lung cells) while safe to MRC-5 (normal lung fibroblast cells) cell lines.
Background Inkjet method has been used to produce nano-sized liposomes with a uniform size distribution. However, following the production of liposomes by inkjet method, the solvent residue in the product could have a significant effect on the properties of the final liposomes. Objective This research paper aimed to find a suitable method to remove ethanol content and to study its effect on the properties of the final liposomal suspension. Method Egg phosphatidylcholine and lidocaine were dissolved in ethanol; and inkjet method at 80 kHz was applied to produce uniform droplets, which were deposited in an aqueous solution to form liposomes. Dry nitrogen gas flow, air-drying, and rotary evaporator were tested to remove the ethanol content. Liposome properties such as size, polydispersity index (PDI), and charge were screened before and after ethanol evaporation. Results Only rotary evaporator (at constant speed and room temperature for 2 h) removed all of the ethanol content, with a final drug entrapment efficiency (EE) of 29.44 ± 6.77%. This was higher than a conventional method. Furthermore, removing ethanol led to liposome size reduction from approximately 200 nm to less than 100 nm in most samples. Additionally, this increased the liposomal net charge, which contributed to maintain the uniform and narrow size distribution of liposomes. Conclusion Nano-sized liposomes were produced with a narrow PDI and higher EE compared to a conventional method by using an inkjet method. Moreover, rotary evaporator for 2 h reduced effectively the ethanol content, while maintaining the narrow size distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.