A major methodological challenge of functional near-infrared spectroscopy (fNIRS) is its high sensitivity to haemodynamic fluctuations in the scalp. Superficial fluctuations contribute on the one hand to the physiological noise of fNIRS, impairing the signal-to-noise ratio, and may on the other hand be erroneously attributed to cerebral changes, leading to false positives in fNIRS experiments. Here we explore the localisation, time course and physiological origin of task-evoked superficial signals in fNIRS and present a method to separate them from cortical signals. We used complementary fNIRS, fMRI, MR-angiography and peripheral physiological measurements (blood pressure, heart rate, skin conductance and skin blood flow) to study activation in the frontal lobe during a continuous performance task. The General Linear Model (GLM) was applied to analyse the fNIRS data, which included an additional predictor to account for systemic changes in the skin.We found that skin blood volume strongly depends on the cognitive state and that sources of task-evoked systemic signals in fNIRS are co-localized with veins draining the scalp. Task-evoked superficial artefacts were mainly observed in concentration changes of oxygenated haemoglobin and could be effectively separated from cerebral signals by GLM analysis. Based on temporal correlation of fNIRS and fMRI signals with peripheral physiological measurements we conclude that the physiological origin of the systemic artefact is a task-evoked sympathetic arterial vasoconstriction followed by a decrease in venous volume.Since changes in sympathetic outflow accompany almost any cognitive and emotional process, we expect scalp vessel artefacts to be present in a wide range of fNIRS settings used in neurocognitive research. Therefore a careful separation of fNIRS signals originating from activated brain and from scalp is a necessary precondition for unbiased fNIRS brain activation maps.
The size distributions of neutral 4He clusters in cryogenic jet beams, analyzed by diffraction from a 100 nm period transmission grating, reveal magic numbers at N=10-11, 14, 22, 26-27, and 44 atoms. Whereas magic numbers in nuclei and clusters are attributed to enhanced stabilities, this is not expected for quantum fluid He clusters on the basis of numerous calculations. These magic numbers occur at threshold sizes for which the quantized excitations calculated with the diffusion Monte Carlo method are stabilized, thereby providing the first experimental confirmation for the energy levels of 4He clusters.
Impulsiveness is a pivotal personality trait representing a core domain in all major personality inventories. Recently, impulsiveness has been identified as an important modulator of cognitive processing, particularly in tasks that require the processing of large amounts of information. Although brain imaging studies have implicated the prefrontal cortex to be a common underlying representation of impulsiveness and related cognitive functioning, to date a fine-grain and detailed morphometric analysis has not been carried out. On the basis of ahigh-resolution magnetic resonance scans acquired in 1620 healthy adolescents (IMAGEN), the individual cortical thickness (CT) was estimated. Correlations between Cloninger's impulsiveness and CT were studied in an entire cortex analysis. The cluster identified was tested for associations with performance in perceptual reasoning tasks of the Wechsler Intelligence Scale for Children (WISC IV). We observed a significant inverse correlation between trait impulsiveness and CT of the left superior frontal cortex (SFC; Monte Carlo Simulation P<0.01). CT within this cluster correlated with perceptual reasoning scores (Bonferroni corrected) of the WISC IV. On the basis of a large sample of adolescents, we identified an extended area in the SFC as a correlate of impulsiveness, which appears to be in line with the trait character of this prominent personality facet. The association of SFC thickness with perceptual reasoning argues for a common neurobiological basis of personality and specific cognitive domains comprising attention, spatial reasoning and response selection. The results may facilitate the understanding of the role of impulsiveness in several psychiatric disorders associated with prefrontal dysfunctions and cognitive deficits.
The size of the helium trimer is determined by diffracting a beam of 4He clusters from a 100 nm period grating inclined by 21 degrees. Because of the bar thickness the projected slit width is roughly halved to 27 nm, increasing the sensitivity to the trimer size. The peak intensities measured out to the eighth order are evaluated via a few-body scattering theory. The trimer pair distance is found to be (r) = 1.1(+0.4)(-0.5) nm in agreement with predictions for the ground state. No evidence for a significant amount of Efimov trimers is found. Their concentration is estimated to be under 6%, less than expected.
If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.