Numerous mathematical models simulating the phenomenon in science and engineering use delay differential equations. In this paper, we focus on the semilinear delay differential equations, which include a wide range of mathematical models with time lags, such as reaction-diffusion equation with delay, model of bacteriophage predation on bacteria in a chemostat, and so on. This paper is concerned with the stability and convergence properties of exponential Runge–Kutta methods for semilinear delay differential equations. GDN-stability and D-convergence of exponential Runge–Kutta methods are investigated. These two concepts are generalizations of the classical AN-stability and B-convergence for ordinary differential equations to delay differential equations. Sufficient conditions for GDN-stability are given by a newly introduced concept of strong exponential algebraic stability. Further, with the aid of diagonal stability, we show that exponential Runge–Kutta methods are D-convergent. The D-convergent orders are also examined. Numerical experiments are presented to illustrate the theoretical results.
Stiff delay differential equations are frequently utilized in practice, but their numerical simulations are difficult due to the complicated interaction between the stiff and delay terms. At the moment, only a few low-order algorithms offer acceptable convergent and stable features. Exponential integrators are a type of efficient numerical approach for stiff problems that can eliminate the influence of stiffness on the scheme by precisely dealing with the stiff term. This study is concerned with two exponential multistep methods of Adams type for stiff delay differential equations. For semilinear delay differential equations, applying the linear multistep method directly to the integral form of the equation yields the exponential multistep method. It is shown that the proposed k-step method is stiffly convergent of order k. On the other hand, we can follow the strategy of the Rosenbrock method to linearize the equation along the numerical solution in each step. The so-called exponential Rosenbrock multistep method is constructed by applying the exponential multistep method to the transformed form of the semilinear delay differential equation. This method can be easily extended to nonlinear delay differential equations. The main contribution of this study is that we show that the k-step exponential Rosenbrock multistep method is stiffly convergent of order k+1 within the framework of a strongly continuous semigroup on Banach space. As a result, the methods developed in this study may be utilized to solve abstract stiff delay differential equations and can be served as time matching methods for delay partial differential equations. Numerical experiments are presented to demonstrate the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.