Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.
Motivation
Synthetic lethality (SL) is a promising form of gene interaction for cancer therapy, as it is able to identify specific genes to target at cancer cells without disrupting normal cells. As high-throughput wet-lab settings are often costly and face various challenges, computational approaches have become a practical complement. In particular, predicting SLs can be formulated as a link prediction task on a graph of interacting genes. Although matrix factorization techniques have been widely adopted in link prediction, they focus on mapping genes to latent representations in isolation, without aggregating information from neighboring genes. Graph convolutional networks (GCN) can capture such neighborhood dependency in a graph. However, it is still challenging to apply GCN for SL prediction as SL interactions are extremely sparse, which is more likely to cause overfitting.
Results
In this paper, we propose a novel Dual-Dropout GCN (DDGCN) for learning more robust gene representations for SL prediction. We employ both coarse-grained node dropout and fine-grained edge dropout to address the issue that standard dropout in vanilla GCN is often inadequate in reducing overfitting on sparse graphs. In particular, coarse-grained node dropout can efficiently and systematically enforce dropout at the node (gene) level, while fine-grained edge dropout can further fine-tune the dropout at the interaction (edge) level. We further present a theoretical framework to justify our model architecture. Finally, we conduct extensive experiments on human SL datasets and the results demonstrate the superior performance of our model in comparison with state-of-the-art methods.
Availability
DDGCN is implemented in python 3.7, open-source and freely available at https://github.com/CXX1113/Dual-DropoutGCN
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.