Pain is one of the most common symptoms in children suffering from leukemia, who are often misdiagnosed with other childhood painful diseases such as juvenile idiopathic arthritis. Corticosteroid-induced osteonecrosis (ON) and vincristine-induced peripheral neuropathy (VIPN) are the most common painful manifestations. Additionally, ongoing pain may continue to impact quality of life in survivorship. This narrative review focuses on the pathophysiological mechanisms of pain in childhood leukemia and current available indications for analgesic treatments. Pain management in children is often inadequate because of difficulties in pain assessment, different indications across countries, and the lack of specific pediatric trials. Analgesic drugs are often prescribed off-label to children by extrapolating information from adult guidelines, with possible increased risk of adverse events. Optimal pain management should involve a multidisciplinary team to ensure assessment and interventions tailored to the individual patient.
Sex differences and age-related changes in the human heart at the tissue, cell, and molecular level have been well-documented and many may be relevant for cardiovascular disease. However, how molecular programs within individual cell types vary across individuals by age and sex remains poorly characterized. To better understand this variation, we performed single-nucleus combinatorial indexing (sci) ATAC- and RNA-Seq in human heart samples from nine donors. We identify hundreds of differentially expressed genes by age and sex. Sex dependent alterations include pathways such as TGFβ signaling and metabolic shifts by sex, evident in both transcriptional alterations and differing presence of transcription factor (TF) motifs in accessible chromatin. Age was associated with changes such as immune activation-related transcriptional and chromatin accessibility differences, as well as changes in the relative proportion of cardiomyocytes, neurons, and perivascular cells. In addition, we compare our adult-derived ATAC-Seq profiles to analogous fetal cell types to identify putative developmental-stage-specific regulatory factors. Finally, we train predictive models of cell-type-specific RNA expression levels utilizing ATAC-Seq profiles to link distal regulatory sequences to promoters, quantifying the predictive value of a simple TF-to-expression regulatory grammar and identifying cell-type-specific TFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.