In comparison with templates of zeolites and silica, a template of nano-magnesium oxide (nano-MgO) has some unique advantages. Namely, it is easily removed by dilute noncorrosive acid solution, is recyclable for nano-MgO precursors, and has tunable pore size by selecting various nano-MgO precursors. In this study, the nano-MgO as a hard template synthesis of lignin carbon-based solid acids catalyst was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). After using nano-MgO as a hard template, the resulting nano-MgO mesoporous carbon-based solid acids (MLCSAs) presented a uniform porous morphology and the smooth surface became rough. When the carbonization temperature was 400°C, the catalytic activity of MLCSAs for the hydrolytic reaction of cellulose was greater than lignin carbon-based solid acids (LCSAs) without nano-MgO as a hard template.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.