Disease clinical treatment measures, such as inpatient length of stay (LOS), have been examined for most if not all diseases. Such analysis has important implications for the management and planning of health care, financial, and human resources. In addition, clinical treatment measures can also informatively reflect intrinsic disease properties such as severity. The existing studies mostly focus on either a single disease (or a few pre‐selected and closely related diseases) or all diseases combined. In this study, we take a new and innovative perspective, examine the interconnections in length of stay (LOS) among diseases, and construct the very first disease clinical treatment network on LOS. To accommodate uniquely challenging data distributions, a new conditional network construction approach is developed. Based on the constructed network, the analysis of important network properties is conducted. The Medicare data on 100 000 randomly selected subjects for the period of January 2008 to December 2018 is analyzed. The network structure and key properties are found to have sensible biomedical interpretations. Being the very first of its kind, this study can be informative to disease clinical management, advance our understanding of disease interconnections, and foster complex network analysis.
Clinical treatment outcomes are the quality and cost targets that health-care providers aim to improve. Most existing outcome analysis focuses on a single disease or all diseases combined. Motivated by the success of molecular and phenotypic human disease networks (HDNs), this article develops a clinical treatment network that describes the interconnections among diseases in terms of inpatient length of stay (LOS) and readmission. Here one node represents one disease, and two nodes are linked with an edge if their LOS and number of readmissions are conditionally dependent. This is the very first HDN that jointly analyzes multiple clinical treatment outcomes at the pan-disease level. To accommodate the unique data characteristics, we propose a modeling approach based on two-part generalized linear models and estimation based on penalized integrative analysis. Analysis is conducted on the Medicare inpatient data of 100,000 randomly selected subjects for the period of January 2010 to December 2018. The resulted network has 1008 edges for 106 nodes. We analyze key network properties including connectivity, module/hub, and temporal variation. The findings are biomedically sensible. For example, high connectivity and hub conditions, such as disorders of lipid metabolism and essential hypertension, are identified. There are also findings that are less/not investigated in the literature. Overall, this study can provide additional insight into diseases' properties and their interconnections and assist more efficient disease management and health-care resources allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.